浏览全部资源
扫码关注微信
1. 北京信息科技大学计算机学院 北京 100101
2. 网络文化与数字传播北京市重点实验室 北京 100101
[ "徐雅斌,男,北京信息科技大学教授、系主任,主要研究方向为社交网络、未来网络。" ]
[ "刘超,男,北京信息科技大学硕士生,主要研究方向为社交网络。" ]
[ "武装,男,博士,北京信息科技大学教授,主要研究方向为社交网络、未来网络。" ]
网络出版日期:2015-01,
纸质出版日期:2015-01-20
移动端阅览
徐雅斌, 刘超, 武装. 基于用户兴趣和推荐信任域的微博推荐[J]. 电信科学, 2015,31(1):7-14.
Yabin Xu, Chao Liu, Zhuang Wu. Micro-Blog Recommendation Based on User Interests and Recommendation Trust Domain[J]. Telecommunications science, 2015, 31(1): 7-14.
徐雅斌, 刘超, 武装. 基于用户兴趣和推荐信任域的微博推荐[J]. 电信科学, 2015,31(1):7-14. DOI: 10.11959/j.issn.1000-0801.2015042.
Yabin Xu, Chao Liu, Zhuang Wu. Micro-Blog Recommendation Based on User Interests and Recommendation Trust Domain[J]. Telecommunications science, 2015, 31(1): 7-14. DOI: 10.11959/j.issn.1000-0801.2015042.
向用户推荐其感兴趣的微博,是改善用户体验的重要途径。为使推荐的微博更加符合用户的兴趣和品味,提出的微博推荐方法不仅考虑用户自身的特点,而且还考虑所在社区对微博的评价。在技术实现上,采用支持向量机进行文本分类,以便发现用户的兴趣偏好;通过多维Newman算法进行用户社区的发现,并将社区视为推荐信任域。最后采用改进的协同过滤算法综合用户兴趣偏好和推荐信任域进行微博推荐,以此提高微博推荐的质量。实验结果表明,提出的微博推荐方法是切实有效的。
Recommending micro-blogs to users whom are interested in is an important way to improve the user's experience. In order to make the recommended micro-blog more match user's interests and tastes
a micro-blog recommendation method was proposed. The method considers not only user's own characteristics
but also the evaluation from the user's community. In technology
vector machine(SVM)was supported for text classification to discover user interests
and through multidimensional Newman algorithm to discover user's community. This community will be regarded as the recommendation trust domain. Finally
the improved collaborative filtering algorithm was used. It integrated user's interests and recommendation trust domain to recommend micro-blog
in order to improve the quality of micro-blog recommendation. The experimental results show that
the micro-blog recommendation method is practical and effective.
Busch M , Gade K , Larson B , et al . Earlybird; real-time search at Twitter . Proceedings of IEEE the 28th International Conference on Data , Washington, USA , 2012 : 185 ~ 193
Chen C , Li F , Ooi B C , et al . TI: an efficient indexing mechanism for real-time search on tweets . Proceedings of the ACM International Conference on Management of Data , Athens, Greece , 2011 : 649 ~ 660
Duan Y , Jiang L , Qin T , et al . An empirical study on learning to rank of tweets . Proceedings of the 23rd International Conference on Computational Linguistics , Beijing, China , 2010 : 295 ~ 303
Chen K , Chen T , Zheng G , et al . Collaborative personalized tweet recommendation . Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval , Portland, USA , 2012 : 661 ~ 670
Chirita P , Nejdl W , Paiu R , et al . Using ODP metadata to personalize search . Proceedings of the 28th Annual Interational ACM SIGIR Conference on Research and Development in Information Retrieval , Salvador, Brazil , 2005 : 178 ~ 185
Ramage D , Dumais S , et al . Characterizing microblogs with topic models . Proceedings of the International AAAI Conference on Weblogs and Social Media , Washington, USA , 2010 : 130 ~ 137
Navee N , Gottron T , Kunegis J , et al . Bad news travel fast: a content-based analysis of interestingness on twitter . Proceedings of the ACM WebSci'11 , Koblenz, Germany , 2011 : 1 ~ 7
Kapanipathi P , Orlandi F , Sheth A , et al . Personalized filtering of the twitter stream . Proceedings of Semantic Personalized Information Management Workshop , Bonn, Germany , 2011 : 6 ~ 13
Chen L , Nayak R , Xu Y . A recommendation method for online dating networks based on social relations and demographic information . Proceedings of International Conference on Advances in Social Networks Analysis and Mining(ASONAM) , Kaohsiung, Taiwan, China , 2011 : 407 ~ 411
Nayak R , Zhang M , Chen L . A social matching system for an online dating network: a preliminary study . 2010 Proceedings of IEEE International Conference on Data Mining Workshops , Sydney, Australia , 2010 : 352 ~ 357
Newman M E J . Communities, modules and large-scale structure in networks . Nature Physics , 2012 , 8 ( 1 ): 25 ~ 31
Newman M E J . Fast algorithm for detecting Community structure in networks . Physical Review E , 2004 , 69 ( 6 ): 66 ~ 133
Girvan M , Newman M E J . Community structure in social and biological networks . Proceedings of the National Academy of Sciences , 2002 , 99 ( 12 ): 7821 ~ 7826
Zhao Z D , Shang M S . User-based collaborative-filtering recommendation algorithms on Hadoop . Proceedings of the Third International Conference on Knowledge Discovery and Data Mining(WKDD'10) , Portland, USA , 2010 : 478 ~ 481
陈可寒 , 韩盼盼 , 吴健 . 基于用户聚类的异构社交网络推荐算法 . 计算机学报 , 2013 , 36 ( 2 ): 349 ~ 359
Chen K H , Han P P , Wu J . User clustering based social network recommendation . Chinese Journal of Computers , 2013 , 36 ( 2 ): 349 ~ 359
罗奇 , 余英 , 赵呈领 等 自适应推荐算法在电子超市个性化服务系统中的应用研究 . 通信学报 , 2006 , 27 ( 11 ): 183 ~ 186
Luo Q , Yu Y , Zhao C L , et al . Research on personalized service system in E-supermarket by using adaptive recommendation algorithm . Journal on Communications , 2006 , 27 ( 11 ): 183 ~ 186
邓爱林 , 朱扬勇 , 施伯乐 . 基于项目评分预测的协同过滤推荐算法 . 软件学报 , 2003 , 14 ( 9 ): 1621 ~ 1628
Deng A L , Zhu Y Y , Shi B L . A collaborative filtering recommendation algorithm based on item rating prediction . Journal of Software , 2003 , 14 ( 9 ): 1621 ~ 1628 .
0
浏览量
478
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构