浏览全部资源
扫码关注微信
[ "王文君,男,中国电波传播研究所工程师,主要研究方向为电磁频谱管理、电波传播和智能优化算法。" ]
网络出版日期:2015-03,
纸质出版日期:2015-03-20
移动端阅览
王文君. 基于自适应遗传算法的无线网络智能选频技术研究[J]. 电信科学, 2015,31(3):61-66.
Wenjun Wang. Research on Radio Network Intelligent Frequency Selection Technology Based on an Adaptive Genetic Algorithm[J]. Telecommunications science, 2015, 31(3): 61-66.
王文君. 基于自适应遗传算法的无线网络智能选频技术研究[J]. 电信科学, 2015,31(3):61-66. DOI: 10.11959/j.issn.1000-0801.2015056.
Wenjun Wang. Research on Radio Network Intelligent Frequency Selection Technology Based on an Adaptive Genetic Algorithm[J]. Telecommunications science, 2015, 31(3): 61-66. DOI: 10.11959/j.issn.1000-0801.2015056.
针对无线电网络使用频率日益紧张的现状,提出了一种基于自适应遗传算法的智能选频技术,从智能优化的角度考虑对无线网络进行整体选频,在基本遗传算法的基础上,对遗传操作进行改进,对最优个体进行保护以确保收敛性,从而克服了传统选频算法的不足,可有效避免陷入局部最优并最终趋于全局优化。理论分析和仿真研究表明,与传统选频算法相比,新算法在解决大规模网络选频问题时,效率和精度更高,且稳定性也显著增强。
In order to solve the problem of selecting frequency more and more difficultly for radio network
an intelligent frequency selection technology based on an adaptive genetic algorithm was proposed.Frequencies were selected for whole radio network from the perspective of intelligent optimization.On the basis of the standard genetic algorithm
this novel method improved genetic operators
and the preservation of the optimal individual algorithm to ensure the diversity of the population was introduced.Therefore
the arithmetic which did well in avoiding some deficiencies of the traditional frequency selection algorithm prevented local optimization and ran into overall optimization ultimately.Theoretical analysis and simulation results show that the new algorithm in solving the problem of frequency selection for large-scale network has higher efficiency and precision than the traditional algorithm
and stability is significantly enhanced.
Maniezzo V , Carbonaro A . An ants heuristic for the frequency assignment problem . Future Generation Computer Systems , 2000 , 16 ( 8 ): 927 ~ 935
Prosser P . Hybrid algorithm for the constraint satisfaction problem . Computational Intelligence , 1993 , 9 ( 3 ): 268 ~ 297
Holland J H . Adaptation in Nature and Artificial System:an Introductory Analysis with Application to Biology,Control,and Artificial Intelligence . MI : The University of Michigan Press , 1975
王小平 , 曹立明 . 遗传算法——理论、应用与软件实现 . 西安 : 西安交通大学出版社 , 2002
Wang X P , Cao L M . Genetic Algorithm——The Theory,Application and Software Implementation . Xi'an : Xi'an Jiaotong University Press , 2002
陈穷 . 电磁兼容性工程设计手册 . 北京 : 国防工业出版社 , 1993
Chen Q . Electromagnetic Compatibility Engineering Design Manual . Beijing : National Defense Industry Press , 1993
Alabau M , Idoumghar L , Schott R . New hybrid genetic algorithms for the frequency assignment problem . IEEE Transactions on Broadcasting , 2002 , 48 ( 3 ): 27 ~ 34
闫妍 . 一种新的自适应遗传算法(硕士学位论文) . 哈尔滨工程大学 , 2007
Yan Y . A new adaptive genetic algorithm(master dissertation) . Harbin Engineering University , 2007
玄光男 , 程润伟 . 遗传算法与工程优化 . 北京 : 清华大学出版社 , 2004
Xuan G N , Cheng R W . Genetic Algorithms and Engineering Optimization . Beijing : Tsinghua University Press , 2004
Kennedy J , Eberhart R . Particle swarm optimization . Proceedings of the 4th IEEE International Conference on Neural Networks , Dallas,Texas,USA , 1995 : 1942 ~ 1948
Cormen T H , Leiserson C E , Rivest R L et al . Introduction to Algorithms(the Second Edition) . Cambrideg : The MIT Press , 2001
0
浏览量
356
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构