浏览全部资源
扫码关注微信
1. 西安交通大学电子与信息工程学院 西安 710049
2. 西安邮电大学通信与信息工程学院 西安 710061
[ "徐璟庭,男,西安交通大学硕士生,主要研究方向为软件定义网络中的控制器部署问题。" ]
[ "曲桦,男,西安交通大学博士生导师,主要研究方向为移动互联网、网络的管理与控制、自适应网络以及智能光纤网络。" ]
[ "赵季红,女,西安交通大学博士生导师,西安邮电大学兼职教授,多年来主要从事宽带通信网络的基础理论研究及应用开发工作。" ]
网络出版日期:2015-06,
纸质出版日期:2015-06-20
移动端阅览
徐璟庭, 曲桦, 赵季红. SDN中基于KMOBPSO的高可靠性控制器部署算法[J]. 电信科学, 2015,31(6):61-67.
Jingting Xu, Hua Qu, Jihong Zhao. KMOBPSO-Based High Reliability Controller Placement Algorithm in SDN[J]. Telecommunication science, 2015, 31(6): 61-67.
徐璟庭, 曲桦, 赵季红. SDN中基于KMOBPSO的高可靠性控制器部署算法[J]. 电信科学, 2015,31(6):61-67. DOI: 10.11959/j.issn.1000-0801.2015153.
Jingting Xu, Hua Qu, Jihong Zhao. KMOBPSO-Based High Reliability Controller Placement Algorithm in SDN[J]. Telecommunication science, 2015, 31(6): 61-67. DOI: 10.11959/j.issn.1000-0801.2015153.
针对SDN中控制器系统的单节点故障问题,兼顾系统成本和系统时延,应用N+1 冗余备份模型来提高SDN控制器部署的可靠性,并将其抽象为多目标优化问题。同时,提出了一种融合K-means聚类算法和遗传算子的多目标二进制粒子群算法——KMOBPSO算法,以求解SDN控制器高可靠性部署问题的解。仿真结果表明,所提算法具有求解精度高、分布均匀、沿Pareto前沿面覆盖广的特点,能够显著提高SDN中控制器部署的可靠性。
N+1 redundancy backup model was applied to controller placement problem in SDN in order to solve single node failure problem and to improve system reliability with taking system cost and latency into consideration,and the problem was abstracted as a multi-objective optimization problem. Meanwhile,an algorithm called KMOBPSO was proposed to calculate the result of high-reliability controller placement in SDN merged with K-means clustering algorithm and genetic operators. Simulations show that the proposed algorithm who has high accuracy,uniform distribution and wide coverage of Pareto front,can significantly improve the reliability of controller placement in SDN.
Greene K . Software-defined networking . http://www.technologyreview.com/read_article.aspxch=specialsections&sc=tr10&id=22120 http://www.technologyreview.com/read_article.aspxch=specialsections&sc=tr10&id=22120 , 2009
Levin D , Wundsam A , Heller B , et al . Logically centralized:state distribution trade-offs in software defined networks . Proceedings of the First Workshop on Hot Topics in Software Defined Networks , Chicago,IL , 2012 : 1 ~ 6
Tootoonchian A , Ganjali Y . HyperFlow:a distributed control plane for OpenFlow . Proceedings of the 2010 Internet Network Management Workshop/Workshop on Research on Enterprise Networking(INM/WREN) , San Jose , 2010
Koponen T , Casado M , Gude N , et al . Onix:a distributed control platform for large-scale production networks . Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation(OSDI) , Vancouver , 2010 : 1 ~ 6
Heller B , Sherwood R , McKeown N . The controller placement problem . Proceedings of the SIGCOMM 2012 Workshop on Hot Topics in Software Defined Networking(HotSDN) , Helsinki , 2012 : 7 ~ 12
Internet2 open science,scholarship and services exchange . http://www.internet2.edu/network/ose/ http://www.internet2.edu/network/ose/ , 2010
刘娟 , 黄韬 , 魏亮 . SDN中基于可靠性优化的控制器放置算法研究 . http://www.paper.edu.cn/releasepaper/content/201312-161 http://www.paper.edu.cn/releasepaper/content/201312-161 , 2013
Liu J , Huang T , Wei L . Controller placement algorithms based on reliability optimization in SDN . http://www.paper.edu.cn/releasepaper/content/201312-161 http://www.paper.edu.cn/releasepaper/content/201312-161 , 2013
刘涛 , 王贤峰 , . 宽带远程接入服务器冗余热备份技术在IP城域网中的应用 . 电信科学 , 2013 , 29 ( 9 ): 132 ~ 136
Liu T , Wang X F . Application of redundancy and standby technology for BRAS in the metropolitan area network . Te1ecommunications Science , 2013 , 29 ( 9 ): 132 ~ 136
Kennedy J , Eberhart R C . Particle swarm optimization . Proceedings of International Conference on Neural Networks , Perth,Australia , 1995 : 1942 ~ 1948
Kennedy J , Eberhart R C . A discrete binary version of the particle swarm algorithm . Proceedings of ICSMC , Orlando,USA , 1997 : 4104 ~ 4108
Coello C A C , Lechuga M S . MOPSO:a proposal for multiple objective particle swarm optimization . Proceedings of the IEEE World Congress on Computational Intelligence(CEC’02) , Honolulu,Hawaii , 2002 : 1051 ~ 1056
Coello C A C , Pulido G T , Lechuga M S . Handling multiple objectives with particle swarm optimization . IEEE Transactions on Evolutionary Computation , 2004 , 8 ( 3 ): 256 ~ 279
仇晨晔 , 王春露 , 左兴权 等 . 基于K-means全局引导策略的多目标微粒群算法 . 北京邮电大学学报(自然版) , 2012 , 35 ( 5 ): 49 ~ 53
Qiu C Y , Wang C L , Zuo X Q , et al . Multi-objective particle swarm optimization based on a k-means guide selection strategy . Journal of beijing University of Posts and Telecommunications(Natural Edition) , 2012 , 35 ( 5 ): 49 ~ 53
Monalisa M . A graph-theoretic approach for identifying non-redundant and relevant gene markers from microarray data using multiobjective binary PSO . PLoS One , 2014 , 9 ( 3 )
Jin N , Rahmat-Samii Y . Rea1-number and binary multi-objective particle swarm optimizations:aperiodic antenna array designs . Proceedings of 2006 IEEE AP-S Int Symp Dig , San Antonio , 2006 : 3523 ~ 3526
Li X . A non-dominated sorting particle swarm optimizer for multiobjective optimization . Proceedings of Genetic and Evolutionary Computation Conference(GECCO’2003) , Berlin,Germany , 2003 : 37 ~ 48
Deb K , Pratap A , Agarwal S , et al . A fast and elitist multiobjective genetic algorithm NSGA-Ⅱ . IEEE Transactions on Evolutionary Computation , 2002 , 6 ( 2 ): 82 ~ 197
Raquel C R , Naval P C . An effective use of crowding distance in multiobjective particle swarm optimization . Proceedings of Genetic and Evolutionary Computation Conference(GECCO’ 2005) , Washington DC,USA , 2005 : 257 ~ 264
0
浏览量
631
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构