浏览全部资源
扫码关注微信
1. 杭州电子科技大学复杂系统建模与仿真教育部重点实验室 杭州 310018
2. 杭州电子科技大学信息工程学院 杭州 310018
[ "程辉,男,杭州电子科技大学硕士生,主要研究方向为机器学习。" ]
[ "方景龙,男,博士,杭州电子科技大学研究员、博士生导师,主要研究方向为机器学习、软件工程。" ]
[ "王大全,男,杭州电子科技大学信息工程学院讲师,主要研究方向为嵌入式系统、智能识别。" ]
[ "王兴起,男,博士,杭州电子科技大学副教授,主要研究方向为数据挖掘、软件测试。" ]
网络出版日期:2015-08,
纸质出版日期:2015-08-20
移动端阅览
程辉, 方景龙, 王大全, 等. 超平面支持向量机简化性能分析[J]. 电信科学, 2015,31(8):78-83.
Hui Cheng, Jinglong Fang, Daquan Wang, et al. Performance Analysis of Simplification of Hyperplane Support Vector Machine[J]. Telecommunications science, 2015, 31(8): 78-83.
程辉, 方景龙, 王大全, 等. 超平面支持向量机简化性能分析[J]. 电信科学, 2015,31(8):78-83. DOI: 10.11959/j.issn.1000-0801.2015161.
Hui Cheng, Jinglong Fang, Daquan Wang, et al. Performance Analysis of Simplification of Hyperplane Support Vector Machine[J]. Telecommunications science, 2015, 31(8): 78-83. DOI: 10.11959/j.issn.1000-0801.2015161.
与传统支持向量机相比,针对复杂分类问题的超平面支持向量机和针对高噪声数据回归问题的回归型超平面支持向量机,具有支持向量少、测试速度快、计算精度高的优点。然而对不同的样本集,超平面支持向量机的简化效果有所不同,仔细分析了这一现象的原因,得出在支持向量中非约束支持向量所占比率越低则超平面支持向量机简化效果越明显的结论。
Comparing with traditional support vector machine,hyperplane support vector machine (HPSVM)and hyperplane support vector machine for regression(HPSVMR)not only reduce the number of support vectors and calculation time but also have comparable accuracy.However,they have different simplification effect on different problems.The reasons for this phenomenon were analyzed,the conclusion that the lower the percentage of non-bound support vectors is,the more obvious the effect of simplification was pointed out.
Burges C J C . Simplified support vector decision rule . Proceedings of the 13th International Conference on Machine Learning , San Mateo,CA,USA , 1996 : 71 ~ 77
Lin M K , Lin J C . A study on reduced support vector machines . IEEE Transactions on Neural Networks , 2003 , 14 ( 6 ): 1449 ~ 1459
Shieh L H , Kuo C C . A reduced data set method for support vector regression . Expert Systems with Applications , 2010 , 37 ( 12 ): 7781 ~ 7787
Lin H J , Yeh J P . Optimal reduction of solutions for support vector machines . Applied Mathematics and Computation , 2009 , 214 ( 2 ): 329 ~ 335
Geebelen D , Suykens J A K , Vandewalle J . Reducing the number of support vectors of SVM classifiers using the smoothed separable case approximation . IEEE Transactions on Neural Networks and Learning Systems , 2012 , 23 ( 4 ): 682 ~ 688
Liang X , Ma Y , He Y , et al . Fast pruning superfluous support vectors in SVMs . Pattern Recognition Letters , 2013 , 34 ( 10 ): 1203 ~ 1209
Severyn A , Moschitti A . Fast support vector machines for convolution tree kernels . Data Mining and Knowledge Discovery , 2012 , 25 ( 2 ): 325 ~ 357
方景龙 , 陈铄 , 潘志庚 等 . 复杂分类问题支持向量机的简化 . 电子学报 , 2007 , 35 ( 5 ): 858 ~ 861
Fang J L , Chen S , Pan Z G , et al . A simplification to support vector machine for complicated recognition problem . Acta Electronica Sinica , 2007 , 35 ( 5 ): 858 ~ 861
Fang J L , Chen S , Liang X W , et al . An improved model of support vector machine for high noise data regression problem . Proceedings of the IET China Ireland International Conference on Information and Communications Technologies , Dublin,Ireland , 2007
Sch02lkopf B , Burges C J C , Smola A J . Advances in Kernel Methods:Support Vector Learning . Cambridge : MIT Press , 1998
Lee M , Keerthi S , Ong C , et al . An efficient method for computing leave-one-out error in support vector machines with Gaussian kernels . IEEE Transactions on Neural Networks , 2004 , 15 ( 3 ): 750 ~ 757
全勇 , 杨杰 , 姚莉秀 等 . 基于连续过松弛方法的支持向量回归算法 . 软件学报 , 2004 , 15 ( 2 ): 200 ~ 206
Quan Y , Yang J , Yao X L , et al . Successive over relaxation for support vector regression . Journal of Software , 2004 , 15 ( 2 ): 200 ~ 206
0
浏览量
669
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构