浏览全部资源
扫码关注微信
[ "王锐,女,北京邮电大学硕士生,主要研究方向为数据挖掘与机器学习。" ]
[ "张志强,男,北京邮电大学硕士生,主要研究方向为数据挖掘与机器学习。" ]
[ "石川,男,北京邮电大学教授、博士生导师,IEEE/ACM/CCF 会员,主要研究方向为机器学习、数据挖掘和演化计算。" ]
网络出版日期:2015-07,
纸质出版日期:2015-07-20
移动端阅览
王锐, 张志强, 石川. 异质信息网络分析及其语义探索[J]. 电信科学, 2015,31(7):43-51.
Rui Wang, Zhiqiang Zhang, Chuan Shi. Analysis and Semantic Mining in Heterogeneous Information Network[J]. Telecommunications science, 2015, 31(7): 43-51.
王锐, 张志强, 石川. 异质信息网络分析及其语义探索[J]. 电信科学, 2015,31(7):43-51. DOI: 10.11959/j.issn.1000-0801.2015166.
Rui Wang, Zhiqiang Zhang, Chuan Shi. Analysis and Semantic Mining in Heterogeneous Information Network[J]. Telecommunications science, 2015, 31(7): 43-51. DOI: 10.11959/j.issn.1000-0801.2015166.
由多种类型的实体和关系构成的异质信息网络逐渐成为社会网络分析的研究热点。作为异质信息网络的一个独特属性,元路径包含了丰富的语义信息。实际生活中的许多网络都包含带权值的链接,这使得不考虑链接上权值的传统元路径不能精确地捕捉网络中的语义信息。基于此,描述了异质信息网络的相关概念,并对异质信息网络的应用进行了简要介绍。通过将传统元路径扩展为带权元路径,更精确地描述了带权值的异质信息网络中微妙的语义信息。通过在两个真实数据集上进行实验,说明了带权元路径在推荐、相关性搜索中的应用效果。
Heterogeneous information network(HIN),which is composed of different types of objects and links,has gradually become a hot topic in social network analysis.As a unique characteristic of HIN,meta path contains rich semantic information.Heterogeneous information network with values on links are ubiquitous in real world.Therefore,the traditional meta path,which doesn’t consider weight on links,can not exactly capture semantics in many cases.Related concepts of HIN were introduced and a brief introduction of applications of HIN was given.Then subtle semantic information in HIN was explored by extending the traditional meta path to weighted meta path.Experiments on two real data sets demonstrate the applications of the weighted meta path in recommendation,relevance search.
Sun Y , Norick B , Han J , et al . Integrating meta-path selection with user-guided object clustering in heterogeneous information networks . Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining , Beijing,China , 2012 : 723 ~ 724
Ji M , Han J , Danilevsky M . Ranking-based classification ofh ete rogeneous information networks . Proceedings of the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining , San Diego,California,USA , 2011 : 1298 ~ 1306
Yu X , Ren X , Sun Y , et al . Personalized entity recommendation:a heterogeneous information network approach . Proceedings of the 7th ACM WSDM Conference , New York,USA , 2014 : 283 ~ 292
Sun Y , Han J , Yan X , et al . Pathsim:meta path-based top-k similarity search in heterogeneous information networks . Proceedings of the 37th International Conference on Very Large Data Bases , Seattle,WA,USA , 2011 : 992 ~ 1003
Lao N , Cohen W W . Fast query execution for retrieval models based on path-constrained random walks . Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining , Washington DC,USA , 2010 : 881 ~ 888
Shi C , Kong X , Huang Y , et al . HeteSim:a general framework for relevance measure in heterogeneous networks . IEEE Transactions on Knowledge & Data Engineering , 2014 ( 10 ): 2479 ~ 2492
Sun Y , Han J . Mining heterogeneous information networks:a structural analysis approach . ACM SIGKDD Explorations Newsletter , 2013 , 14 ( 2 ): 20 ~ 28
Sun Y , Aggarwal C , Han J . Relation strength-aware clustering of heterogeneous information networks with incomplete attributes . Proceedings of the 38th International Conference on Very Large Data Bases , Istanbul,Turkey , 2012 : 394 ~ 405
Sun Y , Han J , Zhao P . RankClus:integrating clustering with ranking for heterogeneous information network analysis . Proceedings of EDBT , Saint-Petersburg,Russia , 2009 : 565 ~ 576
Angelova R , Kasneci G , Weikum G . Graffiti:graph-based classification in heterogeneous networks . Proceedings of International Conference of World Wide Web , Lyon,France , 2012 : 139 ~ 170
Jacob Y , Denoyer L , Gallinari P . Learning latent representations of nodes for classifying in heterogeneous social networks . Proceedings of the 7th ACM WSDM Conference , New York,USA , 2014 : 373 ~ 382
Yang Y , Chawla N V , Sun Y , et al . Predicting links in multi-relational and heterogeneous networks . Proceeding of the 12th IEEE International Conference on Data Mining , Brussels,Belgium , 2012 : 755 ~ 764
Sun Y , Barber R , Gupta M , et al . Co-author relationship prediction in heterogeneous bibliographic networks . Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining , Kaohsiung,Taiwan,China , 2011 : 121 ~ 128
Zhang J , Kong X , Yu P S . Transferring heterogeneous links across location-based social networks . Proceedings of the 7th ACM WSDM Conference , New York,USA , 2014 : 303 ~ 312
0
浏览量
1102
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构