浏览全部资源
扫码关注微信
1. 北京石油化工学院 北京102617
2. 北京航空航夭大学 北京102206
3. 北京化工大学 北京100029
[ "张宁,女,博士,北京石油化工学院教授、硕士生导师,主要研究方向为计算机通信网络、控制理论与控制工程。" ]
[ "范崇睿,男,北京航空航天大学在读,主要研究方向为控制科学、电气工程。" ]
[ "张岩,男,北京化工大学硕士生,主要研究方向为推荐算法、系统软件。" ]
网络出版日期:2015-09,
纸质出版日期:2015-09-20
移动端阅览
张宁, 范崇睿, 张岩. 一种基于RFM模型的新型协同过滤个性化推荐算法[J]. 电信科学, 2015,31(9):103-111.
Ning Zhang, Chongrui Fan, Yan Zhang. A Novel Personalized Recommendation Algorithm of Collaborative Filtering Based on RFM Model[J]. Telecommunications science, 2015, 31(9): 103-111.
张宁, 范崇睿, 张岩. 一种基于RFM模型的新型协同过滤个性化推荐算法[J]. 电信科学, 2015,31(9):103-111. DOI: 10.11959/j.issn.1000-0801.2015180.
Ning Zhang, Chongrui Fan, Yan Zhang. A Novel Personalized Recommendation Algorithm of Collaborative Filtering Based on RFM Model[J]. Telecommunications science, 2015, 31(9): 103-111. DOI: 10.11959/j.issn.1000-0801.2015180.
摘要:为了提高个性化推荐效果及预测准确度,特别是针对传统算法中评分矩阵过于稀疏等问题提出一种新颖的协同过滤算法。该算法首先利用RFM模型合理地筛选用户信息,其次通过黏性客户的消费记录稠密化用户—项目评分矩阵,并改进了传统相似度计算公式。通过仿真实验证实了算法的准确性,最后将其应用于一套具有个性化商品推荐功能的系统原型中,证明了该推荐算法的有效性及实用性。
In order to improve the accuracy of recommendation
especially the matrix score of personalized recommendation technology is too spars
a new recommendation algorithm was proposed. The advantages of this algorithm were mainly embodied in the following aspects. Firstly
the improved algorithm with RFM model was used to select the original customer in some condition
making the recommended source of data more accurate and efficient. Secondly
in the improved algorithm the customer consumption history records were filled to the matrix to improve the consistency of the matrix of score. Thirdly
the traditional Pearson similarity calculation formula was improved to make the search of target users of similar neighbor more accurate. Then the simulation experiment was carried on by using the improved algorithm. It can be proved that the improved algorithm is better than the traditional one in accuracy. At last
the improved algorithm was applied to a recommendation system with personalized recommendation function. It was shown that the recommendation algorithm was efficient and valid.
刘建国 , 周涛 , 汪秉弘 . 个性化推荐系统的研究进展 . 自然科学进展 , 2009 , 19 ( 1 ): 2 ~ 7
Liu J G , Zhou T , Wang B H . Research progress of personalized recommendation system . Progress in Natural Science , 2009 , 19 ( 1 ): 2 ~ 7
蒋盛益 , 李霞 . 数据挖掘原理与实践 . 北京 : 电子工业出版社 , 2011
Jiang S Y , Li X . Principle and Practice of Data Mining . Beijing : Publishing House of Electronics Industry , 2011
Adomavicius G , Tuzhilin A . Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions . IEEE Transactions on Knowledge and Data Engineering , 2005 , 17 ( 6 ): 734 ~ 749
Ahn H J . A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem . Information Sciences , 2008 , 178 ( 1 ): 37 ~ 51
Lemime D , Maclachlan A . Slope one predictors for online rating-based collaborative filtering . Proceedings of SIAM Data Mining Conference , Newport Beach, California, USA , 2005
Huang Z , Chen H , Zeng D . Analyzing consumer-product graphs:empirical findings and applications in recommender systems . Management Science , 2007 , 53 ( 7 ): 1146 ~ 1164
Zhang F , Chang H Y . A collaborative filtering algorithm embedded bp network to ameliborate sparsity issue . Proceedings of 2005 International Conference on Machine Learning and Cybernetics , Guangzhou, China , 2005 : 1839 ~ 1844
Deshpande M , Karypic G . Item-based top-n recommendation algorithms . ACM Transactions on Information Systems , 2004 , 28 ( 1 ): 143 ~ 177
Kim H N . Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation . Information Processing and Management , 2009 ( 8 ): 368 ~ 379
Das A , Datar M , Garg A . Google news personalization: scalable oline collaborative filtering . Proceedings of the 16th International Conference on World Wide Web , Canada , 2007
顾申华 . 结合奇异值分解和时间权重的协同过滤算法 . 计算机应用与软件 , 2010 , 27 ( 6 ): 256 ~ 259
Gu S H . Collaborative filtering algorithm combining singular value decomposition and time weight . Computer Applications and Software , 2010 , 27 ( 6 ): 256 ~ 259
Zheng N , Li Q D . A recommender system based on tag and time information for social tagging systems . Expert Systems with Applications , 2011 ( 38 ): 4575 ~ 4587
丛晓琪 , 杨怀珍 , 刘枚莲 . 基于时间加权的协同过滤算法研究 . 计算机应用与软件 , 2009 , 26 ( 8 ): 120 ~ 140
Cong X Q , Yang H Z , Liu M L . On collaborative filtering algorithm based on time weight . Computer Applications and Software , 2009 , 26 ( 8 ): 120 ~ 140
彭德巍 , 胡斌 . 一种基于用户特征和时间的协同过滤算法 . 武汉理工大学学报 , 2009 , 31 ( 3 ): 24 ~ 28
Peng D W , Hu B . A collaborative filtering recommendation based on user characteristics and time weight . Journal of Wuhan University of Technology , 2009 , 31 ( 3 ): 24 ~ 28
吴发青 , 贺樑 , 夏薇薇 . 一种基于用户兴趣局部相似性的推荐算法 . 计算机应用 , 2008 , 28 ( 8 ): 1981 ~ 1985
Wu F Q , He L , Xia W W . A recommendation algorithm based on users' partial similarity . Computer Applications , 2008 , 28 ( 8 ): 1981 ~ 1985
刑春晓 , 高凤荣 , 战思南 . 适应用户兴趣变化的协同过滤推荐算法 . 计算机研究与发展 , 2007 , 44 ( 2 ): 196 ~ 231
Xing X C , Gao F R , Zhan S N . A collaborative filtering recommendation algorithm incorporated with user interest change . Journal of Computer Research and Development , 2007 , 44 ( 2 ): 196 ~ 231
Zhang Z K , Zhou T . Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs . Physica A: Statistical Mechanics and its Applications , 2010 , 389 ( 1 ): 179 ~ 186
林霜梅 , 汪更生 , 陈弈秋 . 个性化推荐系统中的用户建模及特征选择 . 计算机工程 , 2007 , 33 ( 17 ): 196 ~ 198
Lin S M , Wang G S , Chen Y Q . User modeling and feature selection in personalized recommending system . Computer Engineering , 2007 , 33 ( 17 ): 196 ~ 198
赵银春 , 付关友 , 朱征宇 . 基于Web浏览内容和行为相结合的用户兴趣挖掘 . 计算机工程 , 2005 , 31 ( 12 ): 93 ~ 94
Zhao Y C , Fu G Y , Zhu Z Y . User interest mining of combining web content and behavior analysis . Computer Engineering , 2005 , 31 ( 12 ): 93 ~ 94
范波 , 程久军 . 用户间多相似度协同过滤推荐算法 . 计算机科学 , 2012 , 19 ( 39 ): 23 ~ 26
Fan B , Cheng J J . Collaborative filtering recommendation algorithm based on user's multi-similarity . Computer Science , 2012 , 19 ( 39 ): 23 ~ 26
徐翔 , 王煦法 . 协同过滤算法中的相似度优化方法 . 计算机工程 , 2010 , 36 ( 6 ): 52 ~ 54
Xu X , Wang X F . Optimization method of similarity degree in collaborative filter algorithm . Computer Engineering , 2010 , 36 ( 6 ): 52 ~ 54
Konstan H . Evaluating collaborative filtering recommender system . ACM Transactions on Information Systems , 2004 , 22 ( 1 ): 5 ~ 53
李春 , 朱珍民 , 高晓芳 . 基于邻居决策的协同过滤推荐算法 . 计算机工程 , 2010 , 36 ( 13 ): 34 ~ 36
Li C , Zhu Z M , Gao X F . Collaborative filtering recommendation algorithm based on neighbor decision-making . Computer Engineering , 2010 , 36 ( 13 ): 34 ~ 36
邓爱林 , 朱扬勇 , 施伯乐 . 基于项目评分预测的协同过滤推荐算法 . 软件学报 , 2003 , 14 ( 9 ): 1621 ~ 1628
Deng A L , Zhu Y Y , Shi B L . A collaborative filtering recommendation algorithm based on item rating prediction . Journal of Software , 2003 , 14 ( 9 ): 1621 ~ 1628
0
浏览量
856
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构