浏览全部资源
扫码关注微信
[ "高升,男,博士,北京邮电大学副教授,主要研究方向为机器学习、信息推荐和社会网络分析等。" ]
[ "任思婷,女,北京邮电大学在读,主要研究方向为机器学习与信息推荐。" ]
[ "郭军,男,博士,北京邮电大学教授,主要研究方向为复杂网络与网络搜索等。" ]
网络出版日期:2015-07,
纸质出版日期:2015-07-20
移动端阅览
高升, 任思婷, 郭军. 基于潜在因子模型的跨领域信息推荐算法[J]. 电信科学, 2015,31(7):75-79.
Sheng Gao, Siting Ren, Jun Guo. Cross-Domain Recommendation Algorithm Based on Latent Factor Model[J]. Telecommunications science, 2015, 31(7): 75-79.
高升, 任思婷, 郭军. 基于潜在因子模型的跨领域信息推荐算法[J]. 电信科学, 2015,31(7):75-79. DOI: 10.11959/j.issn.1000-0801.2015188.
Sheng Gao, Siting Ren, Jun Guo. Cross-Domain Recommendation Algorithm Based on Latent Factor Model[J]. Telecommunications science, 2015, 31(7): 75-79. DOI: 10.11959/j.issn.1000-0801.2015188.
互联网环境下,不同领域中多源异构信息对象的交互融合使用户面临大数据环境下的信息选择困境,传统的信息推荐算法已很难适应跨领域的信息推荐服务。综合分析了不同领域内用户对信息对象的评价数据,基于潜在因子模型抽取了不同领域中某一用户聚类集合对某一信息对象聚类集合评分模式的跨领域共性特征和单领域个性特征,进而通过传递、共享跨域共性特征信息的方式缓解了目标领域的数据稀疏性问题,提高了跨域信息推荐的准确度。
In the internet environment,the combining of multi-source heterogeneous information objects in different areas makes users face information selection dilemma problem in big data environment.It has been very difficulty for traditional information recommendation algorithms to adapt to the interdisciplinary information recommendation service.The evaluation model from a user clustering set to an information object clustering set has common characteristics of cross-domain and personality characteristics of single domain.By analyzing the evaluation data from users to information objects in different areas,these characteristics were extracted based on latent factor model.Then by transmitting and sharing the common characteristics of cross-domain,the data sparseness problem of target field was alleviated,which could improve the accuracy of cross-domain information recommendation.
Adomavicius G , Tuzhilin A . Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions . IEEE Transactions on Knowledge and Data Engineering(TKDE) , 2005 , 17 ( 6 ): 734 ~ 749
Koren Y . Collaborative filtering with temporal dynamics . Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , Paris,France , 2009 : 447 ~ 455
Jordan M I , Blei D M , Ng A Y , et al . Latent dirichlet allocation . Journal of Machine Learning Research , 2003 ( 3 ): 993 ~ 1022
Hofmann T . Probabilistic latent semantic indexing . Proceedings of the 21th Annual International SIGIR Conference on Research & Development in Information Retrieval , Berkeley,CA,USA , 1999 : 457 ~ 465
Hofmann T . Collaborative filtering via gaussian probabilistic latent semantic analysis . Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval , Toronto,Canada , 2003 : 259 ~ 266
Bishop C M . Pattern Recognition and Machine Learning . New York : Springer-Verlag , 2006
Lee D D , Seung H S . Learning the parts of objects by nonnegative matrix factorization . Nature , 1999 , 401 ( 6755 ): 788 ~ 791
Olshausen B A , Field D J . Emergence of simple-cell receptive field properties by learning a sparse code for natural images . Nature , 1996 ( 381 ): 607 ~ 609
Gao S , Luo H , Chen D , et al . Cross-domain recommendation via cluster-level latent factor model . Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Database , Prague,Czech Republic , 2013 : 161 ~ 176
Pan W , Liu N N , Xiang E W , et al . Transfer learning to predict missing ratings via heterogeneous user feedbacks . Proceedings of the 22th International Joint Conference on Artificial Intelligence , Barcelona,Spain , 2011 : 2318 ~ 2323
Li B , Yang Q , Xue X . Transfer learning for collaborative filtering via a rating-matrix generative model . Proceedings of the 26th International Conference on Machine Learning , Montreal,Canada , 2009 : 617 ~ 624
Singh A P , Gordon G J . Relational learning via collective matrix factorization . Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , Las Vegas,Nevada,USA , 2008 : 650 ~ 658
Berkovsky S , Kuflik T , Ricci F . Mediation of user models for enhanced personalization in recommender systems . User Modeling and User-Adapted Interaction , 2008 , 18 ( 3 ): 345 ~ 352
Zhang Y , Koren J . Relational learning via collective matrix factorization . Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval , New York,USA , 2007 : 47 ~ 54
Lee D D , Seung H S . Algorithms for non-negative matrix factorization . Advances in Neural Information Processing Systems , 2001 , 13 ( 3 ): 556 ~ 562
Luo S , Rong J . Flexible mixture model for collaborative filtering . Proceedings of the 20th International Conference on Machine Learning , Washington DC,USA , 2003 ( 3 ): 704 ~ 711
Baeza-Yates R , Ribeiro-Neto B . Modern information retrieval . Facet Publishing , 1999 , 20 ( 19 ): 305 ~ 306
Hu Y F , Koren Y , Volinsky C . Collaborative filtering for implicit feedback datasets . Proceedings of IEEE 8th Conference on Data Mining , Pisa,Italy , 2008 : 263 ~ 272
0
浏览量
1269
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构