浏览全部资源
扫码关注微信
[ "冯陈伟,男,厦门理工学院光电与通信工程学院讲师,主要研究方向为下一代无线通信技术。" ]
[ "袁江南,男,博士,厦门理工学院光电与通信工程学院副教授,主要研究方向为通信信号处理。" ]
网络出版日期:2015-08,
纸质出版日期:2015-08-20
移动端阅览
冯陈伟, 袁江南. 基于强化学习的异构无线网络资源管理算法[J]. 电信科学, 2015,31(8):99-106.
Chenwei Feng, Jiangnan Yuan. Heterogeneous Wireless Network Resource Management Algorithm Based on Reinforcement Learning[J]. Telecommunications science, 2015, 31(8): 99-106.
冯陈伟, 袁江南. 基于强化学习的异构无线网络资源管理算法[J]. 电信科学, 2015,31(8):99-106. DOI: 10.11959/j.issn.1000-0801.2015195.
Chenwei Feng, Jiangnan Yuan. Heterogeneous Wireless Network Resource Management Algorithm Based on Reinforcement Learning[J]. Telecommunications science, 2015, 31(8): 99-106. DOI: 10.11959/j.issn.1000-0801.2015195.
为了充分利用各种无线网络的资源,需要实现异构网络的融合,而异构网络的融合又面临接入控制与资源分配的问题。为此,提出一种基于强化学习的异构无线网络资源管理算法,该算法引入 D2D (device-to-device)通信模式,并可以根据终端不同的业务类型、终端移动性及网络负载条件等状态,选择合适的网络接入方式。同时,为降低存储需求,采用神经网络技术解决连续状态空间问题。仿真结果表明,该算法具有高效的在线学习能力,能够有效地提升网络的频谱效用,降低阻塞率,从而实现自主的无线资源管理。
In order to make full use of the resources of all kinds of wireless network,the integration of heterogeneous network is necessary.However,when it comes to the heterogeneous network integration,the problems of call request access control and resource management emerge.A reinforcement-learning-based algorithm was presented for heterogeneous wireless network resource management.D2D (device-to-device)communication was introduced into the proposed algorithm and the appropriate network for access could be selected according to different traffic types,terminal mobility,network load status and so on.Meanwhile,to reduce the storage requirement,the neural network technology was used to solve the problem of continuous state space.Simulation results show that the proposed algorithm has an efficient learning ability to achieve autonomous radio resource management,which effectively improves the spectrum utility and reduces the blocking probability.
Luo J , Mukerjee R , Dillinger M , et al . Investigation of radio resource scheduling in WLANs coupled with 3G cellular network . IEEE Communications Magazine , 2003 , 41 ( 6 ): 108 ~ 115
3GPP TR 25.881 v5.0.0.Improvement of RRM across RNS and RNS/BSS(Release5) . http://www.3gpp.org http://www.3gpp.org , 2001
Song Q , Jamalipour A . Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques . IEEE Wireless Communications , 2005 , 12 ( 3 ): 42 ~ 48
Zhang Y , Chen J , Zhang P . Autonomic joint radio resource management in B3G environment using reinforcement learning . Proceedings of the 6th Annual Wireless Telecommunications Symposium(WTS 2007) , Pomona,California,USA , 2007
Barto A G . Reinforcement Learning:an Introduction . Cambridge : MIT Press , 1998
Kaelbling L P , Littman M L , Moore A W . Reinforcement learning:a survey . Journal of Artificial Intelligence Research , 1996 ( 4 ): 237 ~ 285
Nie J , Haykin S . A Q-learning-based dynamic channel assignment technique for mobile communication systems . IEEE Transactions on Vehicular Technology , 1999 , 48 ( 5 ): 1676 ~ 1687
Senouci S M , Beylot A L , Pujolle G . Call admission control in cellular networks:a reinforcement learning solution . International Journal of Network Management , 2004 , 14 ( 2 ): 89 ~ 103
Haddad M , Altman Z , Elayoubi S E , et al . A nash-stackelberg fuzzy Q-learning decision approach in heterogeneous cognitive networks . Proceedings of Global Telecommunications Conference (GLOBECOM 2010) , Miami,Florida,USA , 2010 : 1 ~ 6
Simsek M , Czylwik A . Decentralized Q-learning of LTE-femtocells for interference reduction in heterogeneous networks using cooperation . Proceedings of 2012 International ITG Workshop on Smart Antennas(WSA) , Dresden,Germany , 2012 : 86 ~ 91
Saker L , Ben Jemaa S , Elayoubi S E . Q-learning for joint access decision in heterogeneous networks . Proceedings of Wireless Communications and Networking Conference , Budapest,Hungary , 2009 : 1 ~ 5
Tabrizi H , Farhadi G , Cioffi J . Dynamic handoff decision in heterogeneous wireless systems:Q-learning approach . Proceedings of 2012 IEEE International Conference on Communications (ICC) , Ottawa,Canada , 2012 : 3217 ~ 3222
张永靖 , 冯志勇 , 张平 . 基于Q学习的自主联合无线资源管理算法 . 电子与信息学报 , 2008 , 30 ( 3 ): 676 ~ 680
Zhang Y , Feng Z , Zhang P . A Q-learning based autonomic join radio resource management algorithm . Journal of Electronics and Information Technology , 2008 , 33 ( 3 ): 676 ~ 680
Zhao Y , Zhou W , Zhu Q . Q-learning based heterogeneous network selection algorithm . Proceedings of the 2nd World Congress on Computer Science and Information Engineering , Changchun,China , 2011 : 471 ~ 477
Chen Y H , Chang C J , Huang C Y . Fuzzy Q-learning admission control for WCDMA/WLAN heterogeneous networks with multimedia traffic . IEEE Transactions on Mobile Computing , 2009 , 8 ( 11 ): 1469 ~ 1479
谭力 , 陈亚迷 , 李一喆 等 . 一种基于 Q-学习的认知无线网络接入方案 . 新型工业化 , 2011 ( 9 ): 37 ~ 44
Tan L , Chen Y , Li Y , et al . Q-learning based cognitive wireless network access mechanism . Journal of New Industrialization , 2011 ( 9 ): 37 ~ 44
陈旋 . 基于Q学习的LTE/WLAN网络接入控制算法研究(硕士学位论文) . 哈尔滨工业大学 , 2013
Chen X . Call admission control in LTE/WLAN network based on Q-learning(master dissertation) . Harbin Institute of Technology , 2013
Tan X , Luan X , Cheng Y , et al . Cell selection in two-tier femtocell networks using Q-learning algorithm . Proceedings of the 16th International Conference on Advanced Communication Technology , Pyeongchang,Korea , 2014 : 1031 ~ 1035
Doppler K , Rinne M , Wijting C , et al . Device-to-device communication as an underlay to LTE-Advanced networks . IEEE Communications Magazine , 2009 , 47 ( 12 ): 42 ~ 49
Barto A G , Bradtke S J , Singh S P . Learning to act using real-time dynamic programming . Artificial Intelligence , 1995 , 72 ( 1 ): 81 ~ 138
Watkins C J C H , Dayan P . Q-learning . Machine Learning , 1992 , 8 ( 3 ~ 4 ): 279 ~ 292
叶培智 . 异构无线网络接入选择算法的研究(硕士学位论文) . 厦门大学 , 2013
Ye P Z . Research on access selection in heterogeneous wireless networks(master dissertation) . Xiamen University , 2013
Senouci S , Beylot A , Pujolle G Call admission control in cellular networks:a reinforcement learning solution . International Journal of Network Management , 2004 , 14 ( 2 ): 89 ~ 103
0
浏览量
1278
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构