浏览全部资源
扫码关注微信
1. 西安培华学院中兴电信学院 西安 710125
2. 西安科技大学计算机科学与技术学院 西安 710054
[ "黄玉蕾,女,西安培华学院讲师,主要研究方向为云计算、大数据。" ]
[ "罗晓霞,女,西安科技大学副教授,主要研究方向为数据库、软件工程及软件开发。" ]
[ "林青,女,西安培华学院讲师,主要研究方向为计算机网络、仿真。" ]
网络出版日期:2015-11,
纸质出版日期:2015-11-20
移动端阅览
黄玉蕾, 罗晓霞, 林青. 基于位运算和倒排索引的关联规则挖掘算法[J]. 电信科学, 2015,31(11):85-90.
Yulei Huang, Xiaoxia Luo, Qing Lin. An Association Rule Mining Scheme Based on Bit Operation and Reverse Index[J]. Telecommunications science, 2015, 31(11): 85-90.
黄玉蕾, 罗晓霞, 林青. 基于位运算和倒排索引的关联规则挖掘算法[J]. 电信科学, 2015,31(11):85-90. DOI: 10.11959/j.issn.1000-0801.2015230.
Yulei Huang, Xiaoxia Luo, Qing Lin. An Association Rule Mining Scheme Based on Bit Operation and Reverse Index[J]. Telecommunications science, 2015, 31(11): 85-90. DOI: 10.11959/j.issn.1000-0801.2015230.
提出了一种改进的Apriori关联规则挖掘算法,称为Apriori-BR。该算法首先通过扫描两次数据库建立各个频繁项目集到事务的倒排索引,并对倒排索引按照事务长度进行分组,然后在挖掘过程中,利用位运算加快子集的检测,并在必要时动态删除无效的低维事务。实验结果表明,相比于经典的Apriori算法和已有文献中的改进算法,本文所提的Apriori-BR算法显著提高了挖掘效率。
An improved Apriori algorithm for association rule mining called Apriori-BR was proposed
which was based on bit operation and reverse index.Specifically
the reverse index from frequent itemsets to transactions was constructed firstly by scanning twice of database
and the reverse index was grouped by the length of transactions.Then in the mining process
bit operation was adopted to accelerate subset detection together with the dynamical elimination of invalid low-dimensional transactions.The numerical results show that the Apriori-BR proposed can substantially improve mining efficiency when compared with the conventional Apriori algorithm and the improved ones in the literature.
Rakesh A , Tomasz I , Arun S . Mining association rules between sets of items in large databases . Proceedings of ACM SIGMOD 1993 International Conference on Management of Data , New York,USA , 1993 : 207 ~ 216
Han J W , Pei J , Yin Y W . Mining frequent patterns without candidate generation . Proceedings of ACM SIGMOD 2000 International Conference on Management of Data , Dallas,TX,USA , 2000 : 1 ~ 12
Wur S Y , Leu Y H . An effective Boolean algorithm for mining association rules in large databases . Proceedings of the 6th International Conference on Database Systems for Advanced Applications(DASFAA'99) , Hsinchu,China , 1999 : 179 ~ 186
Nagpal S . Improved Apriori algorithm using logarithmic decoding and pruning . International Journal of Engineering Research and Applications(IJERA) , 2012 , 2 ( 3 ): 2569 ~ 2572
Jiao Y B . Research of an improved apriori algorithm in data mining association rules . International Journal of Computer and Communication Engineering(IJCCE) , 2013 , 2 ( 1 ): 25 ~ 27
Singh J , Ram H , Sodhi D J S . Improving efficiency of Apriori algorithm using transaction reduction . International Journal of Scientific and Research Publications , 2013 , 3 ( 1 ): 1 ~ 4
郭健 , 任永功 . 云计算环境下的关联挖掘在图书销售中的研究 . 计算机应用与软件 , 2014 , 31 ( 11 ): 50 ~ 53
Guo J , Ren Y G . Research on association rule mining in book sales under cloud computing environment . Computer Applications and Software , 2014 , 31 ( 11 ): 50 ~ 53
刘敏娴 , 马强 , 宁以风 . 基于频繁矩阵的Apriori 算法改进 . 计算机工程与设计 , 2012 , 33 ( 11 ): 4235 ~ 4239
Liu M X , Ma Q , Ning Y F . Improved Apriori algorithm based on frequent matrix . Computer Engineering and Design , 2012 , 33 ( 11 ): 4235 ~ 4239
陈耿 , 朱玉全 , 杨鹤标 等 . 关联规则挖掘中若干关键技术的研究 . 计算机研究与发展 , 2005 , 42 ( 10 ): 1785 ~ 1789
Chen G , Zhu Y Q , Yang H B , et al . Study of some key techniques in mining association rule . Journal of Computer Research and Development , 2005 , 42 ( 10 ): 1785 ~ 1789
毛宇星 , 陈彤兵 , 施伯乐 . 一种高效的多层和概化关联规则挖掘方法 . 软件学报 , 2011 , 22 ( 12 ): 2965 ~ 2980
Mao Y X , Chen T B , Shi B L , et al . Efficient method for mining multiple-level and generalized association rules . Journal of Software , 2011 , 22 ( 12 ): 2965 ~ 2980
Frequent Itemset Mining Dataset Repository . http://fimi.ua.ac.be/data/ http://fimi.ua.ac.be/data/ , 2013
0
浏览量
718
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构