浏览全部资源
扫码关注微信
1. 浙江工商大学现代商贸研究中心 杭州 310018
2. 浙江工商大学计算机与信息工程学院 杭州 310018
3. 浙江工商大学工商管理学院 杭州 310018
[ "琚春华,男,博士,浙江工商大学教授、博士生导师,计算机与信息工程学院院长,主要研究方向为智能信息处理、数据挖掘、电子商务与物流优化等。" ]
[ "黄治移,男,浙江工商大学硕士生,主要研究方向为智能信息处理、数据挖掘。" ]
[ "鲍福光,男,浙江工商大学博士生,主要研究方向为智能信息处理、数据挖掘和供应链协同合作。" ]
网络出版日期:2015-10,
纸质出版日期:2015-10-20
移动端阅览
琚春华, 黄治移, 鲍福光. 融入音乐子人格特质和社交网络行为分析的音乐推荐方法[J]. 电信科学, 2015,31(10):115-123.
Chunhua Ju, Zhiyi Huang, Fuguang Bao. A Novel Music Recommendation Method Combining Music Sub-Personality and Social Network Behavior Analysis[J]. Telecommunications science, 2015, 31(10): 115-123.
琚春华, 黄治移, 鲍福光. 融入音乐子人格特质和社交网络行为分析的音乐推荐方法[J]. 电信科学, 2015,31(10):115-123. DOI: 10.11959/j.issn.1000-0801.2015240.
Chunhua Ju, Zhiyi Huang, Fuguang Bao. A Novel Music Recommendation Method Combining Music Sub-Personality and Social Network Behavior Analysis[J]. Telecommunications science, 2015, 31(10): 115-123. DOI: 10.11959/j.issn.1000-0801.2015240.
为了可以实时推荐符合人们情感状态的音乐,提出了一种融入音乐子人格特质的社交网络行为分析的音乐推荐算法,该算法通过分析用户发表在微博等社交媒体上的状态,计算用户在该情感状态下对音乐的偏好程度;选择在该情感状态下音乐偏好相似的最近邻用户,最后融入音乐子人格特质进行偏好度计算,为用户推荐最适合其情感状态的音乐。实验结果表明,该算法可以缓解用户数据稀疏性对推荐结果的影响,能够提高推荐系统的推荐质量。
In order to recommend music conforming to the people’s sentiment state in real time,a novel music recommendation method combining music sub-personality and social network behavior analysis was proposed.Through sentiment analysis of the users’ words and sentences which was released on Weibo and other social network,the method calculated the users’ music preference in a sentiment state,the most suitable music was recommend to users in that sentiment state.Experimental results show that the proposed method can alleviate the effect of user data sparsity on the recommendation results.
Balabanovic M , Shoham Y . Fab:content-based,collaborative recommendation . Communications of the ACM , 1997 , 40 ( 3 ): 66 ~ 72
Schafer J B , Dan F , Herlocker J , et al . Collaborative Filtering Recommender Systems.The Adaptive Web . Berlin Heidelberg:Springer , 2007
Yildirim H , Krishnamoorthy M S . A random walk method for alleviating the sparsity problem in collaborative filtering . Proceedings of the 2008 ACM Conference on Recommender Systems(RecSys 08) , Lausanne,Switzerland , 2008 : 131 ~ 138
Shan M K , Kuo F F , Chiang M F , et al . Emotion-based music recommendation by affinity discovery from film music . Expert Systems with Applications , 2007 , 36 ( 4 ): 7666 ~ 7674
Yoon K , Lee J , Kim M U . Music recommendation system using emotion triggering low-level features . IEEE Transactions on Consumer Electronics , 2012 , 58 ( 2 ): 612 ~ 618
Han B J , Rho S , Jun S , et al . Music emotion classification and context-based music recommendation . Multimedia Tools Appl , 2010 ( 2 ): 433 ~ 460
Yeh C C , Tseng S S , Tsai P C , et al . Building a Personalized Music Emotion Prediction System . Advances in Multimedia Information Processing-PCM 2006.Berlin Heidelberg:Springer , 2006
Larsen R J , Buss D M . 人格心理学:人性的科学探索 . 郭永玉 等 译. 北京 : 人民邮电出版社 , 2012
Larsen R J , Buss D M . Person Psychology . Translatel by Guo Y Y , et al . Beijing : Posts & Telecom Press , 2012
邹光宇 . 晴天音乐子人格测评量表 . 中国音乐治疗学会第十届学术年会论文集 , 广州,中国 , 2011
Zou G Y . Fineday measurement scale of music sub-personality . Proceedings of the 10th Annual Conference of Chinese Society of Music Therapy , Guangzhou,China , 2011
Chen H C , Chen A L P . A music recommendation system based on music and user grouping . Journal of Intelligent Information Systems , 2005 , 24 ( 2 ~ 3 ): 113 ~ 132
Winsor P . Automated Music Composition.Automated Music Composition . Denton : University of North Texas Press , 2000
刘楠 . 面向微博短文本的情感分析研究(博士学位论文) . 武汉:武汉大学 , 2013
Liu N . Emotion analysis on short text for Weibo(doctor dissertation) . Wuhan:Wuhan University , 2013
Meyer L B . Music and emotion:distinctions and uncertainties . Series in Affective Science , 2001 , 29 ( 3 ): 23
邓爱林 , 朱扬勇 , 施伯乐 . 基于项目评分预测的协同过滤推荐算法 . 软件学报 , 2003 , 14 ( 9 ): 1621 ~ 1628
Deng A L , Zhu Y Y , Shi B L . A collaborative filtering recommendation algorithm based on item rating prediction . Journal of Software , 2003 , 14 ( 9 ): 1621 ~ 1628
Delsing M J M H , Ter Bogt T F M . Engels R C M E , et al . Adolescents’ music preferences and personality characteristics . European Journal of Personality , 2008 , 22 ( 2 ): 109 ~ 130
胡勋 , 孟祥武 , 张玉洁 等 . 一种融合项目特征和移动用户信任关系的推荐算法 . 软件学报 , 2014 ( 8 ): 1817 ~ 1830
Hu X , Meng X W , Zhang Y J , et al . Recommendation algorithm combing item features and trust relationship of mobile users . Journal of Software , 2014 ( 8 ): 1817 ~ 1830
Adomavicius G , Tuzhilin A . Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions . IEEE Transactions on Knowledge & Data Engineering , 2005 , 17 ( 6 ): 734 ~ 749
0
浏览量
537
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构