浏览全部资源
扫码关注微信
[ "亓晋,男,博士,南京邮电大学物联网学院讲师,主要研究方向为新一代网络、大数据管理与智能计算、云计算。" ]
[ "许斌,男,博士,南京邮电大学物联网学院讲师,主要研究方向为智能计算。" ]
[ "胡筱旋,女,南京邮电大学硕士生,主要研究方向为模式识别与智能系统。" ]
[ "徐匾珈,男,南京邮电大学硕士生,主要研究方向为智能优化算法。" ]
[ "肖星琳,女,南京邮电大学本科在读,主要研究方向为智能优化算法。" ]
网络出版日期:2015-10,
纸质出版日期:2015-10-20
移动端阅览
亓晋, 许斌, 胡筱旋, 等. 基于用户行为认知的在线社交网络协同推荐[J]. 电信科学, 2015,31(10):108-114.
Jin Qi, Bin Xu, Xiaoxuan Hu, et al. Collaborative Recommendation for Online Social Networks Based on User Behavior Cognitive[J]. Telecommunications science, 2015, 31(10): 108-114.
亓晋, 许斌, 胡筱旋, 等. 基于用户行为认知的在线社交网络协同推荐[J]. 电信科学, 2015,31(10):108-114. DOI: 10.11959/j.issn.1000-0801.2015273.
Jin Qi, Bin Xu, Xiaoxuan Hu, et al. Collaborative Recommendation for Online Social Networks Based on User Behavior Cognitive[J]. Telecommunications science, 2015, 31(10): 108-114. DOI: 10.11959/j.issn.1000-0801.2015273.
近年来,在线社交网络成为人们工作、生活不可或缺的信息共享与交流工具,如何对海量庞杂、大范围时空关联的用户行为信息进行认知并据此提供个性化的推荐服务,已成为在线社交网络发展重点关注的问题。为此,提出了一种基于用户行为认知的在线社交网络协同推荐框架,在对用户特征、文本信息及兴趣偏好等行为进行认知的基础上,利用协同过滤算法,实现个性化的推荐服务。实验结果验证了提出的基于用户行为认知的协同推荐策略具有较好的稳定性和实际应用效果。
Recently,online social network(OSN)has become essential tools for information sharing and communication in people’s work and life.How to cognitive massive,complex,large-area and spatiotemporal association user behavior information and provide personalized re1commendation services have become problems need special attention in development of OSN.Thus,a frame of collaborative recommendation for OSN based on user behavior cognitive was proposed which used collaborative filtering algorithm to provide personalized recommendation services on the basis of analysis of behavior of user characteristics,text information and interest preferences,etc.Experimental results verify that the proposed collaborative recommendation strategy based on user behavior cognitive has good stability and actual application effect.
徐恪 , 张赛 , 陈昊 等 . 在线社会网络的测量与分析 . 计算机学报 2014 , 36 ( 9 ): 165 ~ 188
Xu K , Zhang S , Chen H , et al . Measurement and analysis of online social network . Chinese Journal of computers , 2014 , 36 ( 9 ): 165 ~ 188
Burke R . Hybrid recommender systems:survey and experiments . User Modeling and User-Adapted Interaction , 2002 , 12 ( 4 ): 331 ~ 370
Herlocker J L , Konstan J A . Terveen K , et al . Evaluating collaborative filtering recommender systems . ACM Transactions on Information Systems , 2004 , 22 ( 1 ): 5 ~ 53
Hofmann T . Latent semantic models for collaborative filtering . ACM Transactions on Information Systems , 2004 , 22 ( 1 ): 89 ~ 115
Adomavicius G , Tuzhilin A . Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions . IEEE Transactions on Knowledge and Data Engineering , 2005 , 17 ( 6 ): 734 ~ 749
Resnick P , Varian H R . Recommender systems . Communications of the ACM , 1997 ( 40 ): 56 ~ 58
Sanchez G , Faustion A , Barrilero G , et al . Social and content hybrid image recommender system for mobile social networks . Mobile Networks and Applications . 2012 , 17 ( 6 ): 782 ~ 795
Zanda A , Eibe S , Menasalvas E . SOMAR:a social mobile activity recommender . Expert Systems with Applications . 2012 , 39 ( 9 ): 8423 ~ 8429
Quijano-Sanchez L , Diaz-Agudo B , Recio-Garcia J A . Development of a group recommender application in a social network . Knowledge-Based Systems . 2014 ( 71 ): 72 ~ 85
Sun Z , Han L , Huang W , et al . Recommender systems based on social networks . Journal of Systems Software . 2015 ( 99 ): 109 ~ 119
Kardan A A , Hooman M . Targeted advertisement in social networks using recommender systems . Proceedings of 7th International Conference on e-Commerce in Peveloping Countries:With Focus one-Secury(ECDC) , Kish Island,Iran , 2013
Koren J , Zhang Y , Liu X . Personalized interactive faceted search . Proceedings of World Wide Web Conference Series , Beijing,China , 2008 : 477 ~ 486
Zhang Y T , Gong L , Wang Y C . An improved TF-IDF approach for text classification . Journal of Zhejiang University - Science A:Applied Physics & amp;Engineering , 2005 , 6A ( 1 ): 49 ~ 55
梁天一 , 梁永全 , 樊健聪 等 . 基于用户兴趣模型的协同过滤推荐算法 . 计算机应用与软件 2014 ( 11 )
Liang T Y , Liang Y Q , Fan J C , et al . Collaborative filtering recommendation algorithm based on user interest model . Computer Applications and Software , 2014 ( 11 )
0
浏览量
529
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构