浏览全部资源
扫码关注微信
[ "舒浩文,男,北京大学信息科学技术学院硕士生,主要研究方向为硅基高速调制器。" ]
[ "苏昭棠,男,北京大学信息科学技术学院硕士生,主要研究方向为硅基二维材料光电子器件。" ]
[ "王兴军,男,博士,北京大学信息科学技术学院教授,中国光学学会光电技术专业委员会、中国光学工程学会委员会、中国宇航学会光电技术专业委员会、亚洲光子学、国际光学仪器与技术等国际学术会议技术委员会委员。Advances in Condensed Matter Physics 等SCI 期刊客座编辑,国家“863”计划信息领域项目评审专家,国家自然科学基金、教育部博士点基金、北京市自然科学基金等基金的通讯评议人。主要研究方向为高速硅基光电子器件与系统应用、硅基稀土发光材料器件。" ]
[ "周治平,男,博士,北京大学信息科学技术学院教授、博士生导师,教育部长江学者。OSA Fellow、SPIE Fellow、IET Fellow、IEEE、OSA资深会员,中华光电学会(PSC)终身会员,中国光学学会理事,IEEE中国武汉分会创会主席(2006-2008年)。美国光学学会与中国激光杂志社联合刊物 Photonics Research创刊主编,英国 IET Electronics Letters 中国版主编(2008-2010年),英国IET Optoelectronics编委,Chinese Optics Letters 专题编委,Frontiers of Optoelectronics编委,《红外与激光工程》编委。曾任美国乔治亚理工学院微电子研究中心的资深研究员及CMOS工艺中心主任,美国NSF、DOE、DOD项目评委及美国NSF课题负责人。在硅基光源、纳米光栅、光电调制、光学传感、光电探测、光子晶体、慢光、表面等离子体及硅基光电集成方面取得了重要的进展。研究工作于2007 年、2011 年被《激光与光电子学进展》评为中国光学十大进展。多次主持和参加主持了 IEEE、SPIE、OSA及中国光学学会举办的国际学术会议。" ]
网络出版日期:2015-10,
纸质出版日期:2015-10-20
移动端阅览
舒浩文, 苏昭棠, 王兴军, 等. 面向中红外应用的硅基光电子学最近研究进展[J]. 电信科学, 2015,31(10):22-35.
Haowen Shu, Zhaotang Su, Xingjun Wang, et al. Recent Progress of Silicon Photonics for Middle-Infrared Application[J]. Telecommunications science, 2015, 31(10): 22-35.
舒浩文, 苏昭棠, 王兴军, 等. 面向中红外应用的硅基光电子学最近研究进展[J]. 电信科学, 2015,31(10):22-35. DOI: 10.11959/j.issn.1000-0801.2015274.
Haowen Shu, Zhaotang Su, Xingjun Wang, et al. Recent Progress of Silicon Photonics for Middle-Infrared Application[J]. Telecommunications science, 2015, 31(10): 22-35. DOI: 10.11959/j.issn.1000-0801.2015274.
随着信息传递、处理以及存储能力要求的不断提升,传统的近红外通信波段已呈“容量紧缩”之势。而工艺与CMOS兼容、结构简单、成本低廉的硅基光电子技术在中红外信号传输和处理方面已经显示出独特优势,有望在中红外波段实现大规模集成,在非线性光学等领域实现新的飞跃。首先介绍了硅基光电子技术在中红外应用中的优势以及目前研究过程中所遇到的困难和挑战;其次结合材料属性和结构特性对一些基本元件(如波导、分束/合束器、二极管)等在中红外领域的最新研究成果进行了介绍;最后对近5年来在中红外波段所实现传感应用的非线性光学硅基器件(基于FWM的非线性光学器件、频率梳)和面向中红外通信应用的激光器、调制器、光电探测器进行了成果介绍,并对研究进展进行了总结。
“Capacity Crunch”in NIR field needs to be forestalled since the pressure of information transmission,processing and storage is continually growing.Silicon photonics,with compatibility of CMOS,compact structure and low fabrication cost,shows its superiority in the field of mid-IR transmission and signal processing.Thus a lead forward is excepted to be realized in large-scale integration of mid-IR devices and nonlinear optical and other field.The strengths and challenge of silicon photonics in mid-IR application were estimated firstly.Then some“building block”components of silicon photonics in mid-IR(waveguides,beam splitter/combiner,diode,etc)were introduced.Achievements of devices (nonlinear optical devices based on FWM,frequency comb in sensing field and laser,modulator,detector in communication field)within the last five years were presented.Finally,the conclusion was made for recent research progress.
Baehr-Jones T . Silicon-on-sapphire integrated waveguides for the mid-infrared . Opt Express , 2010 ( 18 ): 12127 ~ 12135
Miloševic M . Rib waveguides for mid-infrared silicon photonics . J Opt Soc , 2009 ( B26 ): 1760 ~ 1766
Soref R . Mid-infrared photonics in silicon and germanium . Nature Photonics , 2010 , 4 ( 8 ): 495 ~ 497
Raghunathan V , Borlaug D , Rice R R , et al . Demonstration of a mid-infrared silicon Raman amplifier . Opt Express , 2007 ( 15 ): 14355 ~ 14362
Liu X , Osgood R M , Vlasov Y A , et al . Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides . Nature Photon , 2010 ( 4 ): 557 ~ 560
Miloševic M M . Silicon waveguides and devices for the mid-infrared . Appl Phys Lett , 2012 ( 101 ): 121105
Nedeljkovic M . Silicon photonic devices and platforms for the mid-infrared . Optical Materials Express , 2013 , 3 ( 9 )
Cheng Z . Focusing sub wavelength grating coupler for mid-infrared suspended membrane waveguide . Opt Lett , 2012 , 37 ( 7 ): 1217 ~ 1219
Cheng Z . Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator . IEEE Phot J , 2012 , 4 ( 5 ): 1510 ~ 1519
Miloševic M M . Silicon waveguides for the 3~4 μm wavelength range . Proceedings of the 8th IEEE Conference on Group IV Photonics(Institute of Electrical and Electronics Engineers) , New York,USA 2011 : 208 ~ 210
Baehr-Jones T . Silicon-on-sapphire integrated waveguides for the mid-infrared . Opt Express , 2010 , 18 ( 12 ): 12127 ~ 12135
Li F . Low propagation loss silicon-on-sapphire waveguides for the mid-infrared . Opt Express , 2011 , 19 ( 16 ): 15212 ~ 15220
Spott A . Silicon waveguides and ring resonators at 5.5 μm . Appl Phys Lett , 2010 , 97 ( 21 ): 213501
Shankar R . Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared . Appl Phys Lett , 2013 , 102 ( 5 ): 051108
Mashanovich G Z . Low loss silicon waveguides for the mid-infrared . Opt Express , 2011 , 19 ( 8 ): 7112 ~ 7119
Khan S , Chiles J , Fathpour S . Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics . Appl Phys Lett , 2013 , 102 ( 12 ): 121104
Spott A . Mid-infrared photonics in silicon . Proceedings of SPIE 2011 , California,USA , 2011
Zhang L , Yue Y , Beausoleil R G , et al . Flattened dispersion in silicon slot waveguides . Opt Express , 2010 ( 18 ): 20529 ~ 20534
Miloševic M M . Silicon waveguides and devices for the mid-infrared . Appl Phys Lett , 2012 , 101 ( 12 ): 121105
Reimer C . Mid-infrared photonic crystal waveguides in silicon . Opt Express , 2012 , 20 ( 28 ): 29361 ~ 29368
Fan L , Wang J , Varghese L T , et al . An all-silicon passive optical diode . Science , 2012 ( 335 )
Zhang X Z . All-optical diode in mid-infrared waveband based on self-phase modulation effect in silicon ring resonator . Acta Phys Sin , 2013 , 62 ( 2 )
Bristow A D , Rotenberg N , van Driel H M . Two-photon absorption and Kerr coefficients of silicon for 850~2200 nm . Appl Phys Lett , 2007 ( 90 ): 191104
Claps R , Raghunathan V , Dimitropoulos D , et al . Influence of nonlinear absorption on Raman amplification in Silicon waveguides . Opt Express , 2004 ( 12 ): 2774 ~ 2780
Liang T K , Tsang H K . Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides . Appl Phys Lett , 2004 ( 84 ): 2745 ~ 2747
Soref R A , Emelett S J , Buchwald W R . Silicon waveguided components for the long-wave infrared region . J Opt , 2006 ( 8 ): 840 ~ 848
J alali B . Prospects for silicon mid-IR Raman lasers . Selected Topics in Quantum Electronics,IEEE J Sel Top Quant Electron , 2006 ( 12 ): 1618 ~ 1627
Jalali B , Fathpour S J . Silicon photonics . Lightwave Technol , 2006 ( 24 ): 4600 ~ 4615
Soref R . Toward silicon-based longwave integrated optoelectronics(LIO) . Proceedings of SPIE 6898 , Bellingham,USA , 2008
Ebrahim-Zadeh M , Sorokina I T . Mid-Infrared Coherent Sources and Applications . New York:Springer , 2007
Liu X , Osgood R M J , Vlasov Y A , et al . Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides . Nature Photon , 2010 ( 4 ): 557 ~ 560
Zlatanovic S . Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pum p source . Nature Photon , 2010 ( 4 ): 561 ~ 564
Schliesser A , Picque N , Ha¨nsch T W . Mid-infrared frequency combs . Nat Photonics , 2012 ( 6 ): 440 ~ 449
Maddaloni P . Mid-infrared fibre-based optical comb . New J Phys , 2006 ( 8 ): 262
Sorokin E , Sorokina I T , Mandon J , et al . Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 mm region with a Cr2:ZnSe femtosecond laser . Opt Express , 2007 ( 15 ): 16540 ~ 16545
Adler F . Phase-stabilized,1.5 W frequency comb at 2.8~4.8 mm . Opt Lett , 2009 ( 34 ): 1330 ~ 1332
Hugi A , Villares G , Blaser S , et al . Mid-infrared frequency comb based on a quantum cascade laser . Nature , 2012 ( 492 ): 229 ~ 233
Pearl S , Rotenberg N , van Driel H M . Three photon absorption in silicon for 2300~3300 nm . Appl Phys Lett , 2008 ( 93 ): 131102
Lin Q , Painter O J , Agrawal G P . Nonlinear optical phenomena in silicon waveguides:modeling and applications . Opt Express , 2007 ( 15 ): 16604 ~ 16644
Griffith A G . Silicon-chip mid-infrared frequency comb generation . Nat Commun , 2015 ( 6 ): 6299
Oehrlein G S . Dry etching damage of silicon:a review . Mater Sci Eng , 1989 ( 4 ): 441 ~ 450
Desiatov B , Goykhman I , Levy U . Demonstration of submicron square-like silicon waveguide using optimized LOCOS process . Opt Express , 2010 ( 18 ): 18592 ~ 18597
Griffith A , Cardenas J , Poitras C B , et al . High quality factor and high confinement silicon resonators using process . Opt Express , 2012 ( 20 ): 21341 ~ 21345
Levy J S . CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects . Nat Photonics , 2009 ( 4 ): 37 ~ 40
Lamont M R E , Okawachi Y , Gaeta A L . Route to stabilized ultrabroadband microresonator-based frequency combs . Opt Lett , 2013 ( 38 ): 3478 ~ 3481
Vivien L , Polzer A , Marris-Morini D , et al . Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon . Opt Express , 2012 , 20 ( 2 ): 1096 ~ 1101
Sheng Z , Liu L , Brouckaert J , et al . InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides . Opt Express , 2010 , 18 ( 2 ): 1756 ~ 1761
Wang X , Cheng Z , Xu K , et al . High responsivity graphene/silicon heterostructure waveguide photodetectors . Nat Photonics , 2013 , 7 ( 11 ): 888 ~ 891
Logan D F , Jessop P E , Knights A P . Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors . J Lightwave Technol , 2009 , 27 ( 7 ): 930 ~ 937
Thomson D . Optical detection and modulation at 2~2.5 μm in silicon . Opt Express , 2014 ( 22 ): 10825 ~ 10830
Ackert J J . High-speed detection at two micrometres with monolithic silicon photodiodes . Nat Photonics , 2015 ( 9 ): 393 ~ 397
Foster P J , Doylend J K Mascher P , et al . Optical attenuation in defect-engineered silicon rib waveguides . J Appl Phys , 2006 ( 99 ): 073101
Nedeljkovic M , Soref R Mashanovich G Z . Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1~14 um wavelength range . IEEE Journal of Photonics , 2011 , 3 ( 6 ): 1171 ~ 1180
Sang X , Tien E K Boyraz O . Applications of two photon absorption in silicon . J Optoelectron Adv Mater , 2008 ( 11 )
Liang T K , Tsang H K Day I E , et al . Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements . Appl Phys Lett , 2002 ( 81 )
Li S . Two-photon absorption and all-optical modulation in germanium-on-silicon waveguides for the mid-infrared . Opt Lett , 2015 ( 10 ): 2213 ~ 2216
Hon N , Soref R Jalali B . The third-order nonlinear optical coefficients of Si,Ge,and Si1- xGex in the midwave and longwave infrared . Appl Phys , 2011 ( 110 )
0
浏览量
1563
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构