浏览全部资源
扫码关注微信
1. 南京信息工程大学计算机与软件学院 南京 210044
2. 南京邮电大学物联网学院 南京210003
3. 中国电信股份有限公司江苏分公司操作维护中心 南京 210017
[ "谈玲,女,博士,南京信息工程大学计算机与软件学院副教授,主要研究方向为无线网络安全与无线通信网数据处理。" ]
[ "张琭,男,中国电信股份有限公司江苏分公司操作维护中心工程师,政企客户支撑部产品经理,主要负责视频服务类产品及维护服务产品的支撑及运营工作。" ]
网络出版日期:2015-10,
纸质出版日期:2015-10-20
移动端阅览
谈玲, 张琭. 交互式多生物特征识别技术在电子商务中的应用[J]. 电信科学, 2015,31(10):124-129.
Ling Tan, Lu Zhang. Application of Interactive Multi-Biometrics Recognition on E-Commerce[J]. Telecommunications science, 2015, 31(10): 124-129.
谈玲, 张琭. 交互式多生物特征识别技术在电子商务中的应用[J]. 电信科学, 2015,31(10):124-129. DOI: 10.11959/j.issn.1000-0801.2015277.
Ling Tan, Lu Zhang. Application of Interactive Multi-Biometrics Recognition on E-Commerce[J]. Telecommunications science, 2015, 31(10): 124-129. DOI: 10.11959/j.issn.1000-0801.2015277.
提出了一种交互式多生物特征识别方法,并从第三方支付平台的角度研究了这种识别方法在电子商务中的应用。交互式多生物特征识别方法主要利用鼻子、耳朵、指关节纹三重生物特征来完成用户身份的识别,用户支付确认和签名则利用交互式扫脸和指纹识别来实现。针对人脸和虹膜进行了多生物特征识别的性能。设计了第三方支付平台的框架,并在此框架中搭建了一个简便和轻量级的在线支付预认证分层模型。该模型能够较好地保障支付方、商家、银行等多方的安全性和可靠性,简化用户支付的繁琐操作过程。
An interactive multi-biometrics recognition method was proposed,and its application on e-commerce was researched from third-party payment platform.For our interactive multi-biometrics recognition,the identification of users was accomplished with the recognition of multi-biometrics features like nose,ear,and finger-knuckle-print.Payment confirmation and signature were achieved with interactive face scan and fingerprint identification.A frame of third party payment platform was designed,based on which a simple and light-weighted pre-authentication layered model for online payment was established.This model can well guarantee security and reliability of payers,sellers,and banks,simplify the process of payment for users as well.
Hassinen M , Hypponen K , Trichina E . Utilizing national public-key infrastructure in mobile payment systems . Electronic Commerce Research and Application , 2008 , 7 ( 2 )
王科俊 , 邹国锋 . 基于子模式的Gabor特征融合的单样本人脸识别 . 模式识别与人工智能 , 2013 , 26 ( 2 )
Wang K J , Zou G F . A sub-pattern Gabor features fusion method for single sample face recognition . Pattern Recognition and Aitificial Intelligence , 2013 , 26 ( 2 )
Faraji M R , Qi X J . Face recognition under illumination variations based on eight local directional patterns . IET Biometrics , 2015 , 4 ( 1 )
Kim M . Sparse discriminative region selection algorithm for face recognition . Applied Intelligence , 2015 ( 1 )
Li Y , Wang Y H , Wang B B , et al . Nose tip detection on three-dimensional faces using pose-invariant differential surface features . IET Computer Vision , 2015 , 9 ( 1 )
Emambakhsh M , Evans A N . Self-dependent 3D face rotational alignment using the nose region . Proceedings of the 4th International Conference on Imaging for Crime Detection and Prevention , Stevenage,UK , 2011
Peng X , Bennamoun M , Mian A S . A training-free nose tip detection method from face range images . Pattern Recognit , 2011 , 44 ( 3 )
Adhikesavan S , Fareedha S A . Ear biometrics in human identification system . Biometrics & Bioinformatics , 2014 , 5 ( 4 )
Galdamez P L , Arrieta M A G . Ear biometrics:a small look at the process of ear recognition . Proceedings of International Joint Conference SOCO’13-CISIS’13-ICEUTE’13 , Salamanca,Spain , 2013
Farida K , Mir A H . AR model based human identification using ear biometrics . int.Journal of Signal Processing Image Processing , 2014 , 7 ( 3 )
Morales A , Travieso C M , Ferrer M A , et al . Improved finger-knuckle print authentication based on orientation enhancement . Electronics Letters , 2011 , 47 ( 6 )
Gao G W , Yang J , Qian J J , et al . Integration of multiple orientation and texture information for finger-knuckle-print verification . Nerocomputing , 2014 ( 135 ): 180 ~ 191
Gandhi P V , Vanitha M , Rajkumar S . Preventing mobility device intrusion and information theft using biometric fingerprint recognition . Biometrics & Bioinformatics , 2014 , 6 ( 2 )
Labati R D , Genovese A , Piuri V , et al . Touchless fingerprint biometrics:a survey on 2D and 3D technologies . Journal of Internet Technology , 2014 , 15 ( 3 )
Kim M K , Flynn P J . Finger-knuckle-print verification based on vector consistency of corresponding interest points . Proceedings of 2014 IEEE Winter Conference on Application of Computer Vision , Steamboat Springs,USA , 2014
Wang Y H , Tan T N , Jain A K . Combining face and iris biometrics for identity verification . Preceedings of International Conference on Audio- & Video-based Biometric Person Authenticat , Guildford,UK 2013 : 311 ~ 321
Chen C H , C hu C T . Fusion of face and iris features for multimodal biometrics . Lecture Notes in Computer Science , 2005 ( 3832 ): 571 ~ 580
Cristianini N , Shawe T J . An Introduction to Support Vector Machines . Rechnical Report CSD-TR-98-04 , 1998
Zhang J P , Li Z W , Yang J . A parallel SVM training algorithm on large-scale classification problems . Proceeding of the 4th International Conference on Machine Learning and Cybernetics , Guangzhou,China 2009 : 18 ~ 21
Jing X Y , Wong H S , Zhang D . Face recognition based on 2D fisherface approach . Journal of Pattern Recognition , 2006 , 39 ( 4 ): 707 ~ 710
Ou C M , Ou C R , Setnr A . An agent-based secure payment protocol for mobile commerce . Journal of Intelligent Information And Database Systems , 2012 , 4 ( 3 )
0
浏览量
838
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构