浏览全部资源
扫码关注微信
[ "倪善金,男,北京交通大学电子信息工程学院博士生,主要研究方向为大规模MIMO无线通信。" ]
[ "赵军辉,男,博士,北京交通大学电子信息工程学院教授,主要研究方向为无线和移动通信(MIMO、OFDM、CDMA、合作通信、中继和认知无线电)、射频识别(定位技术、防碰撞技术和安全协议)和应用开发(停车场管理系统、嵌入式车载防盗系统和GPS导航系统开发)等。" ]
网络出版日期:2015-12,
纸质出版日期:2015-12-20
移动端阅览
倪善金, 赵军辉. 5G无线通信网络物理层关键技术[J]. 电信科学, 2015,31(12):40-45.
Shanjin Ni, Junhui Zhao. Key Technologies in Physical Layer of 5G Wireless Communications Network[J]. Telecommunications science, 2015, 31(12): 40-45.
倪善金, 赵军辉. 5G无线通信网络物理层关键技术[J]. 电信科学, 2015,31(12):40-45. DOI: 10.11959/j.issn.1000-0801.2015322.
Shanjin Ni, Junhui Zhao. Key Technologies in Physical Layer of 5G Wireless Communications Network[J]. Telecommunications science, 2015, 31(12): 40-45. DOI: 10.11959/j.issn.1000-0801.2015322.
信息社会日益增长的需求,促使着无线通信技术的不断发展。计划于2020年进入商业运营的5G无线通信技术,尚在探索和研究阶段。从无线通信的发展历程出发,介绍了当前国内外的无线通信发展的最新趋势,然后从频谱资源紧缺、系统容量亟需提高的角度,着重介绍了两个关键的物理层技术——毫米波通信技术和大规模MIMO技术,以应对未来无线通信的发展要求。此外,还概括性地介绍了5G无线通信系统的应用场景以及未来的发展趋势。
The continuously increasing demand of wireless communications impels the fast development of the next generation wireless communication technology. The 5G communication technology
which scheduled to be commercialized in the year beyond 2020
is still on its earlier stage. Based on the development history of wireless communications
the latest trend in the development of the wireless communications at home and abroad was presented. In order to solve the shortage of spectrum resources and improve the capacity of system
two key technologies of physical layer(millimeter-wave communications and massive MIMO)were introduced and remarked. Furthermore
the scenarios and development trend of 5G mobile communication systems in the future were also described.
Wang C X , Haider F Gao X , et al . Cellular architecture and key technologies for 5G wireless communication networks . IEEE Communications Magazine , 2014 , 52 ( 2 ): 122 ~ 130
Pi Z , Khan F . An introduction to millimeter-wave mobile broadband systems . IEEE Communications Magazine , 2011 , 49 ( 6 ): 101 ~ 107
Bleicher A . The 5G phones future . IEEE Spectrum , 2013 , 50 ( 7 ): 15 ~ 16
Rappaport T S , Sun S , Mayzus R , et al . Millimeter wave mobile communications for 5G cellular: it will work ! IEEE Access , 2013 ( 1 ): 335 ~ 349
Zhao Q L , Li J . Rain attenuation in millimeter wave ranges . Proceedings of 7th International Symposium on Antennas, Propagation&EM Theory , Guilin, Chin , 2006 : 1 ~ 4
Rusek F , Persson D , Lau B K , et al . Scaling up MIMO:opportunities and challenges with very large arrays . IEEE Signal Processing Magazine , 2013 , 30 ( 1 ): 40 ~ 60
Marzetta T L . Noncooperative cellular wireless with unlimited numbers of base station antennas . IEEE Transactions on Wireless Communications , 2010 , 9 ( 11 ): 3590 ~ 3600
Lu L , Li G , Swindlehurst A , et al . An overview of massive MIMO: benefits and challenges . IEEE Journal of Selected Topics in Signal Processing , 2013 , 8 ( 5 ): 742 ~ 758
Larsson E , Edfors O , Tufvesson F , et al . Massive MIMO for next generation wireless systems . IEEE Communication Magazine , 2013 , 52 ( 2 ): 186 ~ 195
Marzetta T L , Caire G , Debbah M , et al . Special issue on massmive MIMO . Journal of Communications and Networks , 2013 , 15 ( 4 ): 333 ~ 337
Ngo H Q , Marzetta T L , Larsson E G . Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models . Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP) , Prague,Czech Republic , 2011 : 3464 ~ 3467
Yin H , Gesbert D , Filippou M , et al . A coordinated approach to channel estimation in large-scale multiple-antenna systems . IEEE Journal on Selected Areas in Communications , 2013 , 31 ( 2 ): 264 ~ 273
Li Y , Na Y H , Ng B L , et al . non-asymptotic throughput for massive MIMO cellular uplink with pilot reuse . Proceedings of IEEE Global Communications Conference(Globecom) , Ottawa, Canada , 2012 : 4500 ~ 4504
Gopalakrishnan B , Jindal N . An analysis of pilot contamination on multi-user MIMO cellular systems with many antennas . Proceedings of IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC) , San Francisco, California, USA , 2011 : 381 ~ 385
Vu T X , Vu T A , Quek T Q S . Successive pilot contamination elimination in multi-antenna multi-cell networks . IEEE Wireless Communications Letters , 2014 , 3 ( 6 ): 617 ~ 620
Zhang J , Zhang B , Chen S , et al . Pilot contamination elimination for large-cale multiple-antenna aided OFDM systems . IEEE Journal of Selected Topics in Signal Processing , 2014 , 8 ( 5 ): 759 ~ 772
Jose J , Ashikhmin A , Marzetta T L , et al . Pilot contamination and precoding in multi-cell TDD systems . IEEE Transactions on Wireless Communications , 2011 , 10 ( 8 ): 2640 ~ 2651
Li L , Ashikhmin A E , Marzetta T L . Pilot contamination precoding for interference reduction in large scale antenna systems . Proceedings of 51 Annual Allerton Conference , Monticello, Mississippi, USA , 2013 : 226 ~ 232
Muller R R , Vehkapera M , Cottatellucci L . Analysis of blind pilot decontamination . Proceedings of Conference on Signals, Systems&Computers , Pacnfic Grave, CA, USA , 2013 , 8 ( 5 ): 61016 ~ 61020
Appaiah K , Ashikhmin A , Marzetta T L . Pilot contamination reduction in multi-user TDD systems . Proceedings of IEEE International Conference on Communications(ICC) , Cape Town, South Africa , 2010 : 1 ~ 5
Fernandes F , Ashikhmi A , Marzetta T L . Inter-cell interference in noncooperative TDD large scale antenna systems . IEEE Journal on Selected Areas in Communications , 2013 , 31 ( 2 ): 192 ~ 201
0
浏览量
4615
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构