浏览全部资源
扫码关注微信
1. 常州纺织服装职业技术学院创意与艺术设计学院 常州213164
2. 河南广播电视大学现代教育技术中心 郑州450000
[ "唐爱平,男,常州纺织服装职业技术学院创意与艺术设计学院讲师,主要研究方向为图像技术、数据库技术。" ]
[ "曹卉,女,河南广播电视大学现代教育技术中心讲师,主要研究方向为云计算、大数据数据分析。" ]
网络出版日期:2015-12,
纸质出版日期:2015-12-20
移动端阅览
唐爱平, 曹卉. 基于Contourlet域分块压缩感知的图像融合[J]. 电信科学, 2015,31(12):76-82.
Aiping Tang, Hui Cao. Image Fusing by Block Compressed Sensing in Contourlet Domain[J]. Telecommunications science, 2015, 31(12): 76-82.
唐爱平, 曹卉. 基于Contourlet域分块压缩感知的图像融合[J]. 电信科学, 2015,31(12):76-82. DOI: 10.11959/j.issn.1000-0801.2015348.
Aiping Tang, Hui Cao. Image Fusing by Block Compressed Sensing in Contourlet Domain[J]. Telecommunications science, 2015, 31(12): 76-82. DOI: 10.11959/j.issn.1000-0801.2015348.
针对传统图像融合方法导致纹理细节丢失的现象,提出了一种基于抗混叠移不变Contourlet域的分块压缩感知(block-based compressed sensing
BCS)图像融合算法——Contourlet_BCS。把善于表达图像纹理及边缘信息的Contourlet变换引入了压缩感知稀疏表示中,同时对分解得到的低频系数采取加权的区域能量融合规则,高频系数采取基于广义高斯分布模型的加权融合规则进行图像系数融合,最后在压缩感知框架下利用带平滑处理的投影Landweber算法重构。实验结果表明,Contourlet_BCS融合效果优于传统方法,融合的图像纹理清晰,边缘细节信息更为丰富。
For traditional image fusion method results in loss of texture detail
a block compressed sensing image fusion algorithm in contourlet domain with a shift invariant and anti-aliasing ability called Contourlet_BCS was proposed. Contourlet_BCS introduced contourlet transform into the sparse representation step of compressed sensing since its remarkable feature of articulating the texture and edge information
meanwhile
the low-frequency coefficients fused by weighted rule of regional energy and high-frequency coefficients based on the weighted fusion rule by generalized Gaussian distribution model were also used. Finally
the high quality image can be reconstructed by smooth projection Landweber iteration method under the compressed sensing framework. Experimental results show that the image fused by Contourlet_BCS was better than the traditional method and the fusion image texture clear and had more abundant edge details.
王雷 , 金炜 , 何艳 . 采用冗余字典稀疏表达的红外与水汽云图融合 . 波大学学报(理工版) 2014 , 27 ( 3 ): 32 ~ 36
Wang L , Jin W , He Y . Infrared and water vapor cloud image fusion using redundant dictionary sparse representation . Journal of Ningbo University(Natural Science & Engineering Edition) , 2014 , 27 ( 3 ): 32 ~ 36
徐思宁 , 王世立 , 程威敏 等 . 多源图像融合技术研究 . 舰船电子工程 2014 , 34 ( 7 ): 65 ~ 767
Xu S N , Wang S L , Cheng W M , et al . Research on multi-source image fution technique . Ship Electronic Engineering , 2014 , 34 ( 7 ): 65 ~ 767
崔岩梅 , 倪国强 , 钟堰利 等 . 利用统计特性进行图像融合效果分析及评价 . 北京理工大学学报 2000 , 20 ( 1 ): 102 ~ 106
Cui Y M , Ni G Q , Zhong Y L , et al . Analysis and evaluation of the effect of image fusion using statistics parameters . Journal of Beijing Institute of Technology , 2000 , 20 ( 1 ): 102 ~ 106
马强 , 刘栋 . 基于最小能量小波框架的多聚焦图像融合算法 . 计算机与数字工程 2013 , 41 ( 2 ): 204 ~ 207
Ma Q , Liu D . Multi-focus image fusion algorithm based on minimum energy wavelet frame . Computer and Digital Engineering , 2013 , 41 ( 2 ): 204 ~ 207
于坤林 , 谢志宇 , 原振文 . 改进的小波图像融合算法及应用研究 . 计算机与数字工程 2014 ,( 4 ): 592 ~ 595
Yu K L , Xie Z Y , Yua Z W . Applications of improved wavelet image fusion algorithms . Computer and Digital Engineering , 2014 ,( 4 ): 592 ~ 595
Donoho D L . Compressed sensing . IIEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 ~ 1306
Candès E J . Compressive sampling . Proceedings of the International Congress of Mathematicians , Madrid, Spain , 2006 : 489 ~ 509
李光鑫 , 王珂 . 基于Contourlet 变换的彩色图像融合算法 . 电子学报 2007 , 35 ( 1 ): 112 ~ 117
Li G X , Wang K . Color image fusion algorithm using the Contourlet transform . Acta Electronica Sinica , 2007 , 35 ( 1 ): 112 ~ 117
刘坤 , 郭雷 , 常威威 . 基于Contourlet变换的区域特征自适应图像融合算法 . 光学学 2008 , 28 ( 4 ): 681 ~ 686
Liu K , Guo L , Chang W W . Regional feature self-adaptive image fusion algorithm based on Contourlet transform . JActa Optica Sinica , 2008 , 28 ( 4 ): 681 ~ 686
Mun S , Fowler J E . Block compressed sensing of images using directional transforms . Proceedings of the International Conference on Image Processing , Cairo,Egypt , 2009 : 3021 ~ 3024
Fowler J E , Mun S , Tramel E W . Multiscale block compressed sensing with smoothed projected landweber reconstruction . Proceedings of the European Signal Processing Conference , Barcelona, Spain , 2011 : 564 ~ 568
李然 , 干宗良 , 朱秀昌 . 基于PCA 硬阈值收缩的平滑投影Landweber图像压缩感知重构 . 中国图像图形学报 2013 , 18 ( 5 ): 504 ~ 514
Li R , Gan Z L , Zhu X C . Smoothed projected Landweber image compressed sensing reconstruction using hard thresholding based on principal components analysis . Journal of Image and Graphics , 2013 , 18 ( 5 ): 504 ~ 514
Do M N , Vetterli M . The Contourlet transform: an efficient directional multiesolution image representation . IEEE Transactions on Image Processing , 2005 , 14 ( 12 ): 2091 ~ 2106
黄小霞 , 符冉迪 , 石大维 等 . 种抗混叠移不变Contourlet 变换 . 宁波大学学报(理工版) 2012 , 25 ( 4 ): 29 ~ 34
Huang X X , Fu R D , Shi D W , et al . A Contourlet transform with anti-aliasing and shift-invariance . Journal of Ningbo University(Natural Science&Engineering Edition) , 2012 , 25 ( 4 ): 29 ~ 34
Cunha A L , Zhou J , Do M N . The nonsubsample Contourlet transform: theory, design and application . IEEE Transactions on Image Processing , 2006 , 18 ( 10 ): 2269 ~ 2278
刘杰平 , 何越盛 , 韦岗 . 像素域基于广义高斯分布的WZ帧重构方案设计 . 北京邮电大学学报 2015 , 38 ( 1 ): 103 ~ 107
Liu J P , He Y S , Wei G . Design of WZ frame reconstruction technology based on generalized Gaussian distribution in pixel domain . Journal of Beijing University of Posts and Telecommunications , 2015 , 38 ( 1 ): 103 ~ 107
邵桂芳 , 李祖枢 , 成卫 等 . 基于视觉感知的融合图像质量评价 . 计算机应用 , 2004 , 24 ( 5 ): 69 ~ 71
Shao G F , Li Z S , Cheng W , et al . Fusion image quality evaluation method based on human perception . Computer Applications , 2004 , 24 ( 5 ): 69 ~ 71
Yin C Q , Huang X X , Wang W L , et al . Cloud image fusion using aliasing-suppression and shift-invariance Contourlet transform . Opto-Electronic Engineering , 2014 , 41 ( 3 ): 82 ~ 88
0
浏览量
398
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构