浏览全部资源
扫码关注微信
1. 南京信息职业技术学院 南京210023
2. 南京邮电大学 南京210003
3. 国网智能电网研究院 南京210003
[ "陈雪娇,女,南京信息职业技术学院讲师,主要研究方向为信息网络、移动互联网、信息安全。" ]
[ "王攀,男,博士,南京邮电大学副研究员,主要研究方向为信息网络、业务感知、DPI、大数据分析。" ]
[ "刘世栋,男,博士,国网智能电网研究院信息通信研究所主任工程师,主要研究方向为电力通信网。" ]
网络出版日期:2015-12,
纸质出版日期:2015-12-20
移动端阅览
陈雪娇, 王攀, 刘世栋. 网络应用流类别不平衡环境下的SSL加密应用流识别关键技术[J]. 电信科学, 2015,31(12):83-89.
Xuejiao Chen, Pan Wang, Shidong3 Liu. Key Technology of SSL Encrypted Application Identification Under Imbalance of Application Class[J]. Telecommunications science, 2015, 31(12): 83-89.
陈雪娇, 王攀, 刘世栋. 网络应用流类别不平衡环境下的SSL加密应用流识别关键技术[J]. 电信科学, 2015,31(12):83-89. DOI: 10.11959/j.issn.1000-0801.2015355.
Xuejiao Chen, Pan Wang, Shidong3 Liu. Key Technology of SSL Encrypted Application Identification Under Imbalance of Application Class[J]. Telecommunications science, 2015, 31(12): 83-89. DOI: 10.11959/j.issn.1000-0801.2015355.
通过深入研究网络类别不平衡的原因,选择SMOTE(synthetic minority over-sampling technique)过抽样方法对数据集进行预处理,并充分利用特征匹配高准确性的优点识别和分拣出SSL 加密流,进而利用基于互信息最大化的聚类方法和SVM分类方法进一步识别SSL加密应用,这种混合方法有效地结合了静态特征匹配和机器学习方法的优点,达到识别分类方法在准确性和识别速度的均衡。
Through a in-depth study about the reason of network class imbalance
a method called SMOTE was chosen over the data set sampling preprocess
making full use of the advantages which is high accuracy of traffic model feature matching identification and sorting out the encrypted SSL flow
and then using the clustering method and the SVM based on mutual information classification method to further identify SSL encryption specific application
like HTTPS/POPS etc. The hybrid method effectively combines the advantages of static feature matching and machine learning methods
to achieve the balance of classification method on accuracy and speed.
Bai Y B , Kobayashi H . Intrusion detection systems: technology and development . Proceedings of the 17th International Conference on Advanced Information Networking and Applications , Xi'an, China , 2003 : 27 ~ 29
Wright C , Monrose F , Masson G M . HMM profiles for network traffic classification . Proceedings of the ACM DMSEC , Washington DC, USA , 2004 : 9 ~ 15
Haffner P , Sen S , Spatscheck O , et al . ACAS: automated construction of application signatures . Proceedings of the ACM SIGCOMM , Philadelphia, USA , 2005 : 197 ~ 202
Moore A W , Zuev D . Internet traffic classification using Bayesian analysis techniques . Proceedings of the ACM SIGMETRICS , Banff, Alberta, Canada , 2005 : 50 ~ 60
Moore A , Papagiannaki K . Toward the accurate identification of network applications . Proceedings of the Passive&Active Measurement Workshop , Boston, USA , 2005
Williams N , Zander S , Armitage G . A prelimenary performance comparison of five machine learning algorithms for practical IP traffic flow comparison . ACM SIGCOMM Computer Communication Review , 2006 , 36 ( 5 ): 5 ~ 16
Zhang Y , Paxso V . Detecting back doors . Proceedings of the 9th USENIX Security Symposium , Denver, USA , 2000 : 157 ~ 170
Dreger H , Feldmann A , Mai M , et al . Dynamic application layer protocol analysis for network intrusion detection . Proceedings of the 15th USENIX Security Symposium , Vancouver, Canada , 2006 : 257 ~ 272
Early J , Brodley C , Rosenberg C . Behavioral authentication of server flows . Proceedings of the 19th Annual Computer Security Applications Conference , Las Vegas, USA , 2003 : 46 ~ 55
Karagiannis T , Papagiannaki K , Faloutsos M . BLINC:multilevel traffic classification in the dark . Proceedings of Applications, Technologies, Architectures, and Protocols for Computer Communications , Philadelphia, USA , 2005 : 229 ~ 240
Wright C V , Monrose F , Masson G M , et al . On inferring application protocol behaviors in encrypted network traffic . Journal of Machine Learning Research , 2006 ( 7 ): 2745 ~ 2769
Bernaille L , Teixeira R . Early recognition of encrypted applications . Proceedings of Passive and Active Measurement Conference(PAM) , Louvainla-neuve, Belgium , 2007
Alshammari R , Nur Z H A . A flow based approach for SSH traffic Detection . Proceedings of IEEE International Conference on Systems, Man and Cybernetics , Montreal, Canada , 2007 , 296 ~ 301
赵博 , 郭虹 , 刘勤让 等 . 基于加权累积和检验的加密流量盲识别算法 . 软件学报 2013 , 24 ( 6 ): 1334 ~ 1345
Zhao B , Guo H , Liu Q R , et al . Protocol independent identification of encrypted traffic based on weighted cumulative sum test. . Journal of Software , 2013 , 24 ( 6 ): 1334 ~ 1345
何高峰 , 杨明 , 罗军舟 等 . Tor 匿名通信流量在线识别方法 . 软件学报 2013 , 24 ( 3 ): 540 ~ 556
He G F , Yang M , Luo J Z , et al . Online dentification of Tor anonymous communication traffic . Journal of Software , 2013 , 24 ( 3 ): 540 ~ 556
王炜 , 程东年 , 马海龙 . 基于趋势感知协议指纹的Skype 加密流量识别算法 . 计算机应用研究 2014 ( 8 ): 64 ~ 71
Wang W , Cheng D N , Ma H L . Skype encrypted traffic identification based on trend-aware procotol fingerprints . Application Research of Computers , 2014 ( 8 ): 64 ~ 71
王炜 , 程东年 . 基于M-序列检验的加密流量识别 . 计算机工程与设计 2014 , 35 ( 11 ): 3712 ~ 3716
Wang W , Cheng D N . M-serial test based encrypted traffic identification . Computer Engineerin and Design , 2014 , 35 ( 11 ): 3712 ~ 3716
张宏莉 , 鲁刚 . 分类不平衡协议流的机器学习算法评估与比较 . 软件学报 2102 , 23 ( 6 ): 1500 ~ 1516
Zhang H L , Lu G . Machine learning algorithms classifying the imbalanced protocol flows: evaluation and comparison . ournal of Software , 2102 , 23 ( 6 ): 1500 ~ 1516
Chawla N V , Bowyer K W Hall L O , et al , SMOTE: synthetic minority over-sampling technique . Journal of Artificial Intelligence Research , 2002 , 16 ( 1 ): 321 ~ 357
0
浏览量
718
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构