浏览全部资源
扫码关注微信
[ "何振红(1979-),女,甘肃民族师范学院计算机科学系讲师,主要研究方向为图像处理、模式识别。" ]
网络出版日期:2016-03,
纸质出版日期:2016-03-20
移动端阅览
何振红. 基于特征加权FDCT和模糊最小二乘支持向量机的虹膜识别算法[J]. 电信科学, 2016,32(3):92-98.
Zhenhong HE. Iris recognition algorithm based on feature weighting fast discrete Curvelet transform and fuzzy LS-SVM[J]. Telecommunication science, 2016, 32(3): 92-98.
何振红. 基于特征加权FDCT和模糊最小二乘支持向量机的虹膜识别算法[J]. 电信科学, 2016,32(3):92-98. DOI: 10.11959/j.issn.1000-0801.2016058.
Zhenhong HE. Iris recognition algorithm based on feature weighting fast discrete Curvelet transform and fuzzy LS-SVM[J]. Telecommunication science, 2016, 32(3): 92-98. DOI: 10.11959/j.issn.1000-0801.2016058.
为了克服小波变换在二维空间分析的缺陷,提出了基于快速离散曲波(Curvelet)变换的虹膜识别改进算法。利用能有效捕捉图像边缘信息的Curvelet 变换对虹膜图像进行分解,提取低频子带系数矩阵的均值方差和高频子带能量,然后根据不同子带特征的分类能力不同,对各子带特征的离散度进行加权,为分类能力较强的特征向量赋予较大权值,构成虹膜图像的特征向量。利用最优二叉树多类模糊最小二乘支持向量机分类器进行分类与识别。仿真实验结果表明,该算法具有较高的识别性能,具有可行性。
In order to overcome the weakness of wavelet transform in two dimensional spatial analysis,an improved algorithm based on fast discrete Curvelet transform for iris recognition was proposed.Curvelet transform which can effectively capture the image edge information was introduced to decompose iris image.Mean and variance of low frequency sub-band coefficients and the energy of high frequency sub-band were extracted.Then the feature vectors were weighted according to the difference of classification ability of sub-band feature.Fuzzy least square support vector machine with optimal binary tree was developed to implement classification and recognition.The simulation results show that the proposed algorithm has higher recognition performance than the present method.
DAUGMAN J . The importance of being random:statistical principles of iris recognition [J ] . Pattern Recognition , 2003 , 36 ( 2 ): 279 - 291 .
WILDES R P . Iris recognition: an emerging biometric technology [J ] . Proceedings of the IEEE , 1997 , 85 ( 9 ): 1348 - 1363 .
BOLES W W . Security system based on human iris identification using wavelet transform [J ] . Engineering Applications of Artificial Intelligence , 1998 , 11 ( 1 ): 77 - 85 .
LIM S Y , LEE K , BYEON O , et al . Efficient iris recognition through improvement of feature vector and classifier [J ] . Journal of Electronics and Telecommunication Research Institute , 2001 , 23 ( 2 ): 61 - 70 .
HUANG J , YOU X G , YUAN Y , et al . Rotation invariant iris feature extraction using Gaussian Markov random fields with non-separable wavelet [J ] . Neuro Computing , 2010 , 73 ( 4 - 6 ): 883 - 894 .
BABU N T N , VAIDEHI V . Fuzzy based iris recognition system (FIRS)for person identification [C ] // International Conference on Recent Trends in Information Technology , June 3 - 5 , 2011 , Chennai,India . New Jersey : IEEE Press , 2011 : 1005 - 1011 .
TSAI C C , LIN H Y , TAUR J , et al . Iris recognition using possibilistic fuzzy matching on local features [J ] . IEEE Transactions on Systems,Man and Cybernetics , 2012 , 42 ( 1 ): 150 - 162 .
罗忠亮 , 段琢华 . 基于Curvelet 变换的虹膜识别 [J ] . 武汉理工大学学报 , 2012 , 34 ( 8 ): 160 - 164 .
LUO Z L , DUAN Z H . Iris recognition based on the second generation Curvelet transform [J ] . Journal of Wuhan University of Technology , 2012 , 34 ( 8 ): 160 - 164 .
STARCK J L , MURTAGH F , CANDES E J , et al . Gray and color image contrast enhancement by the Curvelet transform [J ] . IEEE Transactions on Image Processing , 2003 , 12 ( 6 ): 706 - 717 .
CANDèS E J , DEMANET L , DONOHO D L , et al . Fast discrete Curvelet transforms [J ] . Multiscale Modeling & Simulation , 2006 , 5 ( 3 ): 861 - 899 .
SUYKENS J A K , VANDEWALLE J . Least squares support vector machine classifiers [J ] . Neural Processing Letter , 1999 , 9 ( 3 ): 293 - 300 .
许亮 . 改进的模糊最小二乘支持向量机模型 [J ] . 计算机工程 , 2009 , 35 ( 14 ): 236 - 240 .
XU L . Improved fuzzy least squares support vector machines model [J ] . Computer Engineering , 2009 , 35 ( 14 ): 236 - 240 .
0
浏览量
713
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构