浏览全部资源
扫码关注微信
1. 浙江科技学院理学院,浙江 杭州 310023
2. 浙江水利水电学院,浙江 杭州 310018
[ "钱亚冠(1976-),男,博士,浙江科技学院理学院副教授,主要研究方向为互联网流量分类、下一代互联网和机器学习与大数据处理。" ]
[ "关晓惠(1977-),女,浙江水利水电学院副教授,主要研究方向为机器学习与大数据处理。" ]
[ "云本胜(1980-),男,博士,浙江科技学院理学院讲师,主要研究方向为数据挖掘和服务计算。" ]
[ "楼琼(1987-),女,博士,浙江科技学院理学院讲师,主要研究方向为图像处理、机器学习与计算机视觉。" ]
[ "马鹏飞(1986-),男,博士,浙江科技学院理学院讲师,主要研究方向为运筹优化与机器学习。" ]
网络出版日期:2016-05,
纸质出版日期:2016-05-20
移动端阅览
钱亚冠, 关晓惠, 云本胜, 等. 基于可变特征空间SVM的互联网流量分类[J]. 电信科学, 2016,32(5):105-113.
Yaguan QIAN, Xiaohui GUAN, Bensheng YUN, et al. Internet traffic classification using SVM with flexible feature space[J]. Observation and communication, 2016, 32(5): 105-113.
钱亚冠, 关晓惠, 云本胜, 等. 基于可变特征空间SVM的互联网流量分类[J]. 电信科学, 2016,32(5):105-113. DOI: 10.11959/j.issn.1000-0801.2016132.
Yaguan QIAN, Xiaohui GUAN, Bensheng YUN, et al. Internet traffic classification using SVM with flexible feature space[J]. Observation and communication, 2016, 32(5): 105-113. DOI: 10.11959/j.issn.1000-0801.2016132.
支持向量机(support vector machine
SVM)是一类具有良好泛化能力的机器学习算法,适合应用于互联网动态环境下的流量分类问题。目前将SVM扩展到流量分类这样的多分类问题的方法主要有One-Against-All和One-Against-One方法。这些方法都基于单一的特征空间训练SVM两分类器,没有考虑到不同特征对不同流量类的不同区分能力,因此获得的分离超平面并不是最合理的。为此提出了可变特征空间的SVM集成方法,即为每个两分类 SVM 构建具有最优区分能力的独立特征空间,单独训练两分类 SVM,最后再利用One-Against-All和One-Against-One方法集成为多分类器。实验表明,与原来的单一特征空间的One-Against-All和One-Against-One集成方法相比,提出的方法能有效提高流量分类器分类精度和召回率,更易获得最优分离超平面。
SVM is a typical machine learning algorithm with prefect generalization capacity
which is suitable for the internet traffic classification.At present
there are two approaches
One-Against-All and One-Against-One
proposed for extending SVM to multi-class problem like traffic classification.However
these approaches are both based on a unique feature space.In fact
the separating capacity of a special traffic feature is not similar to different applications.Hence
flexible feature space for extending SVM was proposed
which constructs independent feature space with optimal discriminability for each binary-SVM and trains them under their own feature space.Finally
these trained binary-SVM were ensemble by One-Against-All and One-Against-One approaches.The experiments show that the proposed approach can efficiently improve the precision and callback of the traffic classifier and easily obtain more reasonable optimal separating hyper-plane.
BUJLOW T , CARELA-ESPANOL V , BARLET-ROS P . Independent comparison of popular DPI tools for traffic classification . Computer Networks , 2015 ( 76 ): 75 - 89 .
钱亚冠 , 张旻 . 基于过抽样技术的 P2P流量识别方法 [J ] . 电信科学 2014 , 30 ( 4 ): 109 - 113 .
QIAN Y G , ZHANG M . P2P traffic identification based over-sampling technique [J ] . Telecommunications Science , 2014 30 ( 4 ): 109 - 113 .
TONGAONKAR A , TORRES R , ILIOFOROU M , et al . Towards self-adaptive network traffic classification [J ] . Computer Communications , 2015 ( 56 ): 35 - 46 .
SOYSALA M , SCHMIDT E G . Machine learning algorithms for accurate flow-based network trafficclassification:evaluation and comparison . Performance Evaluation , 2010 , 67 ( 6 ): 451 - 467 .
SINGH H . Performance analysis of unsupervised machine learning techniques for network traffic classification [C ] // 2015 Fifth International Conference on Advanced Computing &Communication Technologies (ACCT) , Feb 21 - 25 , 2015 , Haryana,India . New Jersey : IEEE Press , 2015 : 401 - 404 .
徐鹏 , 刘琼 , 林森 . 基于支持向量机的Internet流量分类研究 [J ] . 计算机研究与发展 2009 , 46 ( 3 ): 407 - 414 .
XU P , LIU Q , LIN S . Internet traffic classification using support vector machine [J ] . Journal of Computer Research and Development , 2009 46 ( 3 ): 407 - 414 .
ESTE A , GRINGOLI F , SALGARELLI L . Support vector machines for TCP traffic classification [J ] . The International Journal of Computer and Telecommunications Networking , 2009 , 53 ( 14 ): 2476 - 2490 .
ZHOU X S . A P2P traffic classification method based on SVM [C ] // The 2008 International Symposium on Computer Science and Computational Technology , Dec 20 - 22 , 2008 , Washington,DC,USA .[S.1.:s.n. ] , 2008 : 53 - 57 .
LI Z , YUAN R , GUAN X . Accurate classification of the internet traffic based on the svm method [C ] // The IEEE International Conference onCommunications,2007(ICC'07) , June 24 - 28 , 2007 , Glasgow,Scotland . New Jersey : IEEE Press , 2007 : 1373 - 1378 .
CHANG C C , LIN C J . LIBSVM:a library for support vector machines [EB/OL ] . [ 2001 - 07 - 20 ] . http://www.csie.ntu.edu.tw/cjlin/libsvm http://www.csie.ntu.edu.tw/cjlin/libsvm .
KREBEL H G . Pairwise classification and support vector machines [A ] // SCHOLKIPF B,BURGES C J C,SMOLA A.Advances in kernel methods:support vector learning [M ] . Cambridge : The MIT Press , 1999 : 255 - 268 .
XIE G , ILIOFOTOU M , KERALAPURA R , et al . Subflow:Towards practical flow-level traffic classification [C ] // IEEE INFOCOM 2012 , March 25 - 30 , 2012 , Orlando,FL,USA . New Jersey : IEEE Press , 2012 : 2541 - 2545 .
GUYONG I , WESTON J , BARNHILL S , et al . Gene selection for cancer classification using support vector machines [J ] . Machine Learning , 2002 , 46 ( 1 - 3 ): 389 - 422 .
MOORE A W.Dataset [EB/OL ] . [ 2009 - 06 - 29 ] . http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers/sigmetrics/ http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers/sigmetrics/ .
0
浏览量
421
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构