浏览全部资源
扫码关注微信
1. 内蒙古商贸职业学院,内蒙古 呼和浩特010070
2. 内蒙古农业大学职业技术学院,内蒙古 包头014109
3. 呼和浩特职业学院,内蒙古 呼和浩特010050
[ "范晓峰(1982-),女,内蒙古商贸职业学院讲师,主要研究方向为大数据、云计算。" ]
[ "闫凤(1982-),女,内蒙古农业大学职业技术学院讲师,主要研究方向为大数据。" ]
[ "刘洋(1975-),女,呼和浩特职业学院讲师,主要研究方向为大数据。" ]
网络出版日期:2016-07,
纸质出版日期:2016-07-15
移动端阅览
范晓峰, 闫凤, 刘洋. 大数据云环境下TDS和BUG混合k-匿名化方法[J]. 电信科学, 2016,32(7):90-96.
Xiaofeng FAN, Feng YAN, Yang LIU. Hybrid k-anonymity approach based on TDS and BUG under the environment of big data cloud[J]. Telecommunications science, 2016, 32(7): 90-96.
范晓峰, 闫凤, 刘洋. 大数据云环境下TDS和BUG混合k-匿名化方法[J]. 电信科学, 2016,32(7):90-96. DOI: 10.11959/j.issn.1000-0801.2016135.
Xiaofeng FAN, Feng YAN, Yang LIU. Hybrid k-anonymity approach based on TDS and BUG under the environment of big data cloud[J]. Telecommunications science, 2016, 32(7): 90-96. DOI: 10.11959/j.issn.1000-0801.2016135.
针对一般子树匿名化方法处理大数据效率低和伸缩性较差的问题,提出了一种可伸缩的自下向上的泛化(BUG)方法,并在此基础上,结合已有的自上向下的特化(TDS),形成一种混合方法。在提出的方法中,k-匿名作为隐私模型,TDS和BUG都是基于映射化简开发组成,并通过云的强大计算能力来获得较高的伸缩性。提出的映射化简BUG只需在几次泛化循环之后就可插入一个新的泛化候选,不会影响另一个泛化的信息损失。考虑到工作负载平衡点K与匿名参数k的复杂关系,将映射化简的BUG和TDS结合形成混合方法。实验结果验证了本文方法的有效性,与TDS和BUG相比,混合方法的效率和可伸缩性大为提高。
As the issue of low efficiency and poor scalability in general sub-tree anonymous method of treating big data
a bottom-up generalization(BUG) method with scalability was proposed
and on this basis
combined with the existing top-down specialization(TDS)
a hybrid approach was formed.In the proposed method
k-anonymity was being as a privacy model
the compositions of TDS and BUG were developed with mapping simplification
and higher scalability through powerful cloud computing capabilities were achieved.The proposed mapping simplification BUG could insert a new candidate after several cycles of generalization
and would not affect information loss of another generalization.Given the complexity of the relationship between workload balancing point K and anonymous parameter k
mapping simplifications of BUG and TDS were combined to form a hybrid approach.Experimental results demonstrate the effectiveness of the proposed method and compared with TDS and BUG
the efficiency and scalability of hybrid method are greatly improved.
戚建国 . 基于云计算的大数据安全隐私保护的研究 [D ] . 北京:北京邮电大学 , 2015 .
QI J G . Research on security privacy protection of large data based on cloud computing [D ] . Beijing: Beijing University of Posts and Telecommunications , 2015 .
康瑛石 , 郑子军 , 大数据整合机制与信息共享服务实现 [J ] . 电信科学 , 2014 , 30 ( 12 ): 97 - 102 .
KANG Y S , ZHENG Z J . Big data integration mechanism and information sharing service realization [J ] . Telecommunications Science , 2014 , 30 ( 12 ): 97 - 102 .
徐勇 , 秦小麟 , 杨一涛 , 等 . 一种考虑属性权重的隐私保护数据发布方法 [J ] . 计算机研究与发展 , 2012 , 49 ( 5 ): 913 - 924 .
XU Y , QIN X L , YANG Y T , et al . A QI weighted-aware approach to privacy preserving publishing data set [J ] . Journal of Computer Research and Development , 2012 , 49 ( 5 ): 913 - 924 .
MACHANAVAJJHALA A , GEHRKE J , KIFER D , et al . L-diversity: privacy beyond k-anonymity [J ] . ACM Transactions on Knowledge Discovery from Data , 2007 , 1 ( 1 ): 24 - 32 .
李明庆 . 一种基于抽样确定泛化区间的K-匿名算法 [J ] . 哈尔滨:哈尔滨工程大学 , 2013 .
LI M Q . A K-anonymity algorithm based on sampling to determine the generalized interval [D ] . Harbin: Harbin Engineering University , 2013 .
WANG K , FUNG B C M , YU P S . Handicapping attacker's confidence: an alternative to k-anonymization [J ] . Knowledge &Information Systems , 2007 , 11 ( 3 ): 345 - 368 .
TERROVITIS M , MAMOULIS N , LIAGOURIS J , et al . Privacy preservation by disassociation [J ] . Proceedings of the Vldb Endowment , 2012 , 5 ( 10 ): 944 - 955 .
黄春梅 , 费耀平 , 李敏 , 等 . 基于多维泛化路径的K-匿名算法 [J ] . 计算机工程 , 2009 , 35 ( 2 ): 154 - 156 .
HUANG C M , FEI Y P , LI M . K-anonymity algorithm based on multi-dimensional generalization path [J ] . Computer Engineering , 2009 , 35 ( 2 ): 154 - 156 .
FUNG B C M , WANG K , YU P S . Anonymizing classification data for privacy preservation [J ] . IEEE Transactions on Knowledge & Data Engineering , 2007 , 19 ( 5 ): 711 - 725 .
RAJALAKSHMI V , MALA G S A . Anonymization based on nested clustering for privacy preservation in data mining [J ] . Indian Journal of Computer Science & Engineering , 2013 , 34 ( 3 ): 856 - 861 .
MOHAMMED N , FUNG B C M , HUNG P C K , et al . Centralized and distributed anonymization for high-dimensional healthcare data [J ] . ACM Transactions on Knowledge Discovery from Data , 2010 , 4 ( 4 ): 885 - 900 .
ZHANG X , YANG L T , LIU C , et al . A scalable two-phase top-down specialization approach for data anonymization using MapReduce on cloud [J ] . IEEE Transactions on Parallel &Distributed Systems , 2014 , 25 ( 2 ): 363 - 373 .
吕品 , 钟珞 , 于文兵 , 等 . MA-Datafly:一种支持多属性泛化的k-匿名方法 [J ] . 计算机工程与应用 , 2013 , 49 ( 4 ): 138 - 140 .
LV P , ZHONG L , YU W B , et al . MA-Datafly: k anonymity approaches for supporting multi-attribute generalization [J ] . Computer Engineering and Applications , 2013 , 49 ( 4 ): 138 - 140 .
刘盼盼 . 基于聚类的数据匿名发布技术研究 [D ] . 西安:西安电子科技大学 , 2013 .
LIU P P . Research on technology of data anonymous publishing based on clustering [D ] . Xi'an: Xidian University , 2013 .
CUI X , ZHU P , YANG X , et al . Optimized big data K-means clustering using map reduce [J ] . Journal of Super Computing , 2014 , 70 ( 3 ): 1249 - 1259 .
王笑帝 , 张云勇 , 刘镝 , 等 . 云计算虚拟化安全技术研究 [J ] . 电信科学 , 2015 , 31 ( 6 ): 1 - 5 .
WANG X D , ZHANG Y Y , LIU D , et al . Research on security of virtualization on cloud computing [J ] . Telecommunications Science , 2015 , 31 ( 6 ): 1 - 5 .
KVM [EB/OL ] . ( 2011 - 04 - 10 )[ 2012 - 02 - 10 ] . http://www.linux-kvm.org/page/Main_Page http://www.linux-kvm.org/page/Main_Page .
0
浏览量
455
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构