浏览全部资源
扫码关注微信
[ "彭飞(1991-),男,南通大学电子信息学院硕士生,主要研究方向为认知车载网。" ]
[ "章国安(1965-),男,博士,南通大学电子信息学院教授、博士生导师,主要研究方向为无线通信网络理论与技术。" ]
[ "杨羽琦(1993-),女,南通大学电子信息学院硕士生,主要研究方向为车载自组织网络。" ]
网络出版日期:2016-07,
纸质出版日期:2016-07-15
移动端阅览
彭飞, 章国安, 杨羽琦. 认知车载网中基于簇和MAB模型的信道接入算法[J]. 电信科学, 2016,32(7):27-33.
Fei PENG, Guoan ZHANG, Yuqi YANG. A novel channel access algorithm based on clusters and MAB model in cognitive vehicular network[J]. Telecommunications science, 2016, 32(7): 27-33.
彭飞, 章国安, 杨羽琦. 认知车载网中基于簇和MAB模型的信道接入算法[J]. 电信科学, 2016,32(7):27-33. DOI: 10.11959/j.issn.1000-0801.2016184.
Fei PENG, Guoan ZHANG, Yuqi YANG. A novel channel access algorithm based on clusters and MAB model in cognitive vehicular network[J]. Telecommunications science, 2016, 32(7): 27-33. DOI: 10.11959/j.issn.1000-0801.2016184.
针对高密度车流环境下认知车载网中车辆节点对认知信道的接入问题,提出了基于簇和MAB模型的clusters-UCB信道接入算法,通过簇内成员协作提高感知学习结果的准确性,提升算法学习速度,并且簇首通过clusters-UCB算法分布式地快速搜索出最佳信道,渐近地实现最大的时隙吞吐量。仿真实验表明,提出的算法相对于多用户的UCB 算法和ε-greedy 算法,遗憾值更低,并且趋近于对数形式的收敛速度更快,能够有效减少访问碰撞数,保证信道接入的公平性,提高时隙吞吐量。
Considering the cognitive channel access problem of vehicle nodes in cognitive vehicular networks with heavy traffic environment
a channel access algorithm called clusters-UCB which based on clusters and MAB model was proposed.The cooperation of cluster members could improve perception accuracy and enhance the learning speed.And using improved multi-user UCB algorithm
cluster heads could quickly search out the optimal channel in a distributed way
which could make the network asymptotically achieve the optimal slot throughput.Simulation results show that with respect to UCB algorithm and ε-greedy algorithm
the regret of the proposed algorithm is lower and the speed of approaching logarithmic form is faster.What's more
clusters-UCB can effectively reduce the number of collisions when clusters access the cognitive channels
ensuring the fairness of the channel access and achieving better slot throughput.
HUANG X L , WU J , LI W , et al . Historical spectrum sensing data mining for cognitive radio enabled vehicular Ad Hoc networks [J ] . IEEE Transactions on Dependable & Secure Computing , 2015 , 13 ( 1 ): 59 - 70 .
POONIA R C , BHARGAVA D , KUMAR B S . CDRA:cluster-based dynamic routing approach as a development of the AODV in vehicular Ad Hoc networks [C ] // 2015 International Conference on Signal Processing and Communication Engineering Systems(SPACES) , Jan 2 - 3 , 2015 , Guntur,India . New Jersey : IEEE Press , 2015 : 397 - 401 .
GOONEWARDENE R T , ALI F H , STIPIDIS E . Robust mobility adaptive clustering scheme with support for geographic routing for vehicular Ad Hoc networks [J ] . IET Intelligent Transport Systems , 2009 , 3 ( 2 ): 148 - 158 .
DONG S , LEE J . Greedy confidence bound techniques for restless multi-armed bandit based cognitive radio [C ] // The 47th Annual Conference on Information Sciences and Systems (CISS) , March 20 - 22 , 2013 , Baltimore,MD,USA . New Jersey : IEEE Press , 2013 : 4 - 4 .
朱江 , 陈红翠 , 熊加毫 . 基于多臂赌博机模型的信道选择 [J ] . 电讯技术 2015 , 55 ( 10 ): 1094 - 1100 .
ZHU J , CHEN H C , XIONG J H . Channel selection based on multi-armed bandit [J ] . Telecommunication Engineering , 2015 , 55 ( 10 ): 1094 - 1100 .
KLEINBERG R , PILIOURAS G , TARDOS E . Multiplicative updates outperform generic no-regret learning in congestion games [J ] . Proc Stoc , 2009 : 533 - 542 .
GAI Y , KRISHNAMACHARI B , JAIN R . Learning multiuser channel allocations in cognitive radio networks: a combinatorial multi-armed bandit formulation [C ] // 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks , April 6 - 9 , 2010 , Singapore . New Jersey : IEEE Press , 2010 : 1 - 9 .
AUER P , CESA-BIANCHI N , FISCHER P . Finite-time analysis of the multi-armed bandit problem [J ] . Machine Learning , 2002 , 47 ( 2 - 3 ): 235 - 256 .
AGRAWAL R . Sample mean based index policies with O log n regret for the multiarmed bandit problem [J ] . 1995 , 27 ( 4 ): 1054 - 1078 .
0
浏览量
634
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构