浏览全部资源
扫码关注微信
1. 浙江安防职业技术学院信息工程系,浙江 温州 325016
2. 温州大学生命与环境科学学院,浙江 温州 325035
[ "张丽娜(1980-),女,浙江安防职业技术学院信息工程系讲师,主要研究方向为数据挖掘、图像处理、模式识别。" ]
[ "戴灵鹏(1975-),男,博士,温州大学生命与环境科学学院副教授,主要研究方向为模式识别。" ]
[ "匡泰(1964-),男,浙江安防职业技术学院信息工程系副教授,主要研究方向为大数据、人工智能。" ]
网络出版日期:2016-08,
纸质出版日期:2016-08-20
移动端阅览
张丽娜, 戴灵鹏, 匡泰. 一种适应于非完备标签数据和标签关联性的多标签分类方法[J]. 电信科学, 2016,32(8):82-89.
Lina ZHANG, Lingpeng DAI, Tai KUANG. A multi-label classification method for disposing incomplete labeled data and label relevance[J]. Telecommunications science, 2016, 32(8): 82-89.
张丽娜, 戴灵鹏, 匡泰. 一种适应于非完备标签数据和标签关联性的多标签分类方法[J]. 电信科学, 2016,32(8):82-89. DOI: 10.11959/j.issn.1000-0801.2016197.
Lina ZHANG, Lingpeng DAI, Tai KUANG. A multi-label classification method for disposing incomplete labeled data and label relevance[J]. Telecommunications science, 2016, 32(8): 82-89. DOI: 10.11959/j.issn.1000-0801.2016197.
多标签分类已在很多领域得到了实际应用,所用标签大多具有很强的关联性,甚至存在非完备标签或部分标签遗失。然而,现有的多标签分类算法难以同时处理这两种情况。基于此,提出一种新的概率模型处理方法,实现同时对具有标签关联性和遗失标签情况进行多标签分类。该方法可以自动获知和掌握多标签的关联性。此外,通过整合遗失的标签信息,该方法能够提供一个自适应策略来处理遗失的标签。在完备标签和非完备标签的数据上进行实验,结果表明,与现有的多标签分类算法相比,提出的方法得到了较好的分类预测评价值。
Multi-label classification methods have been applied in many real-world fields,in which the labels may have strong relevance and some of them even are incomplete or missing.However,existing multi-label classification algorithms are unable to handle both issues simultaneously.A new probabilistic model that can automatically learn and exploit multi-label relevance was proposed on label relevance and missing label classification simultaneously.By integrating out the missing information,it also provides a disciplined approach to handle missing labels.Experiments on a number of real world data sets with both complete and incomplete labels demonstrated that the proposed method can achieve higher classification and prediction evaluation scores than the existing multi-label classification algorithms.
ZHANG M L , ZHOU Z H . A review on multi-label learning algorithms [J ] . IEEE Transactions on Knowledge and Data Engineering , 2014 , 26 ( 8 ): 1819 - 1837 .
MADJAROV G , KOCEV D , GJORGJEVIKJ D , et al . An extensive experimental comparison of methods for multi-label learning [J ] . Pattern Recognition , 2012 , 45 ( 9 ): 3084 - 3104 .
王霄 , 周李威 , 陈耿 , 等 . 一种基于标签相关性的多标签分类算法 [J ] . 计算机应用研究 , 2014 , 31 ( 9 ): 2609 - 2614 .
WANG X , ZHOU L W , CHEN G , et al . Correlation label-based multi-label classification algorithm. [J ] . Application Research of Computers , 2014 , 31 ( 9 ): 2609 - 2614 .
TSOUMAKAS G , KATAKIS I , VLAHAVAS I . Mining multi-label data [M ] . New York : SpringerPress , 2010 : 667 - 685 .
READ J , PFAHRINGER B , HOLMES G , et al . Classifier chains for multi-label classification [C ] // European Conference on Machine Learning,June 14-18,2009 , Montreal,Canada . New Jersey : IEEE Press , 2009 : 254 - 269 .
孙霞 , 张敏超 , 冯筠 , 等 . Hadoop框架下的多标签传播算法 [J ] . 西安交通大学学报 , 2015 , 49 ( 5 ): 134 - 139 .
SUN X , ZHANG M C , FENG J , et al . A label propagation algorithm for multi-label classification [J ] . Journal of Xi’an Jiaotong University , 2015 , 49 ( 5 ): 134 - 139 .
HARIHARAN B , ZELNIK M L , VISHWANATHAN S , et al . Large scale max-margin multi-label classification with priors [C ] // 27th International Conference on Machine Learning,June 21-24,2010 , Haifa,Isreal . New Jersey : IEEE Press , 2010 : 423 - 430 .
HSU D , KAKADE S , LANGFORD J , et al . Multi-label prediction via compressed sensing [J ] . Computer Science , 2009 : 772 - 780 .
TAI F , LIN H . Multi-label classification with principal label space transformation [J ] . Neural Computation , 2012 , 24 ( 9 ): 2508 - 2542 .
CHEN Y N , LIN H T . Feature-aware label space dimension reduction for multi-label classification [J ] . Advances in Neural Information Processing Systems , 2012 ( 2 ): 1538 - 1546 .
马宗杰 , 刘华文 . 基于奇异值分解-偏最小二乘回归的多标签分类算法 [J ] . 计算机应用 , 2014 , 34 ( 7 ): 2058 - 2061 .
MA Z J , LIU H W . Multi-label classification based on singular value decomposition-partial least squares regression [J ] . Journal of Computer Applications , 2014 , 34 ( 7 ): 2058 - 2061 .
李远航 , 刘波 , 唐侨 . 面对多标签图数据的主动学习 [J ] . 计算机科学 , 2014 , 41 ( 11 ): 260 - 264 .
LI Y H , LIU B , TANG Q . Active learning for multi-label classification on graphs [J ] . Computer Science , 2014 , 41 ( 11 ): 260 - 264 .
许美香 , 孙福明 , 李豪杰 . 主动学习的多标签图像分类在线分类 [J ] . 中国图像图形学报 , 2015 , 20 ( 2 ): 237 - 244 .
XU M X , SUN F M , LI H J . Online multi-label image classification with active learning [J ] . Journal of Image and Graphics , 2015 , 20 ( 2 ): 237 - 244 .
徐晓丹 , 姚明海 , 刘华文 , 等 . 基于kNN的多标签分类预处理方法 [J ] . 计算机科学 , 2015 , 42 ( 5 ): 106 - 108 .
XU X D , YAO M H , LIU H W , et al . Pre-processing method of multi-label classification based on kNN [J ] . Computer Science , 2015 , 42 ( 5 ): 106 - 108 .
BUCK S , JIN R , JAIN A . Multi-label learning with incomplete class assignments [C ] // IEEE Conference on Computer Vision and Pattern Recognition,June 20-25,2011 , Providence,RI,USA . New Jersey : IEEE Press , 2012 : 2801 - 2808 .
CHEN M , ZHENG A , WEINBERGER K Q . Fast image tagging [C ] // 30th International Conference on Machine Learning,June 16-21,2013 , Atlanta,GA,USA . New Jersey : IEEE Press , 2013 : 1274 - 1282 .
YU H F , JAIN P , DHILLON I S . Large-scale multi-label learning with missing labels [C ] // 31st International Conference on Machine Learning,June 21-26,2014 , Beijing,China . New Jersey : IEEE Press , 2014 : 593 - 601 .
PETTERSON J , CAETANO T . Submodular multi-label learning [J ] . Advances in Neural Information Processing Systems , 2011 : 1512 - 1520 .
GUPTA A , NAGAR D . Matrix variate distributions [M ] . Boca Raton : Chapman&Hall/CRC PressPress , 2000 .
RAI P , KUMAR A , III H D . Simultaneously leveraging output and task structures for multiple-output regression [C ] // Advances in Neural Information Processing Systems,December 3-8,2012 , South Lake Tahoe,USA . New Jersey : IEEE Press , 2012 : 3194 - 3202 .
ROTHMAN A J , LEVINA E , ZHU J . Sparse multivariate regression with covariance estimation [J ] . Journal of Computational and Graphical Statistics , 2010 , 19 ( 4 ): 947 - 962 .
ZHANG Y , YEUNG D Y . A convex formulation for learning task relationships in multi-task learning [C ] // 26th Conference on Uncertainty in Artificial Intelligence,July 8-11,2010 , Los Angeles,USA . New Jersey : IEEE Press , 2010 : 733 - 742 .
BERTSEKAS D P . Nonlinear programming [M ] . Nashua : Athena ScientificPress , 1999 .
BISHOP C M . Pattern recognition and machine learning [M ] . New York : Springer-VerlagPress , 2006 : 125 - 153 .
BECK A , TEBOULLE M . A fast iterative shrinkage-thresholding algorithm for linear inverse problem [J ] . SIAM Journal on Imaging Sciences , 2009 , 2 ( 1 ): 183 - 202 .
GUILLAUMIN M , MENSINK T , VERBEEK J , et al . Tagprop:discriminative metric learning in nearest neighbor models for image auto-annotation [C ] // International Conference on Computer Vision,September 29-October 2,2009 , Kyoto,Japan . New Jersey : IEEE Press , 2009 : 309 - 316 .
0
浏览量
584
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构