浏览全部资源
扫码关注微信
[ "何振红(1979-),女,甘肃民族师范学院讲师,主要研究方向为图像处理、模式识别。" ]
网络出版日期:2016-07,
纸质出版日期:2016-07-15
移动端阅览
何振红. 基于广义高斯分布FDCT_Wrap和FSVM的虹膜识别[J]. 电信科学, 2016,32(7):126-131.
Zhenhong HE. Iris recognition based on generalized Gaussian distribution FDCT_Wrap and FSVM[J]. Telecommunications science, 2016, 32(7): 126-131.
何振红. 基于广义高斯分布FDCT_Wrap和FSVM的虹膜识别[J]. 电信科学, 2016,32(7):126-131. DOI: 10.11959/j.issn.1000-0801.2016200.
Zhenhong HE. Iris recognition based on generalized Gaussian distribution FDCT_Wrap and FSVM[J]. Telecommunications science, 2016, 32(7): 126-131. DOI: 10.11959/j.issn.1000-0801.2016200.
为了提高虹膜识别的准确率,提出了一种改进曲波变换的虹膜识别算法。首先对预处理后的虹膜图像进行Wrapping算法的快速离散曲波变换,提取不同尺度和不同方向的曲波子带系数矩阵的均值、方差和能量,然后利用广义高斯分布估算各子带的权值,为分类能力较强的特征向量赋予较大权值,构成虹膜图像的特征向量。最后采用模糊支持向量机和二叉决策树相结合的分类器进行匹配识别。采用UBIRIS和CASIA虹膜数据库对算法性能进行测试。实验结果表明,该算法能更好地提高虹膜识别准确率和效率,具有可行性。
In order to improve the accuracy rate of iris recognition
an improved curvelet transform algorithm for iris recognition was proposed.Firstly
the iris image was decomposed with fast discrete curvelet transform by wrapping algorithm.Mean variance and energy of curvelet sub-band coefficients in different scales and different orientations were extracted.The weights of sub-bands were estimated by generalized Gaussian distribution.The feature vectors with stronger classification ability had large weight
which were calculated to constitute feature vectors of iris image.Finally
feature vectors were matched and recognized by classifier combined with fuzzy support vector machine and binary decision tree.The algorithm performances were tested with UBIRIS and CASIA iris database.Simulation results show that the proposed algorithm has higher recognition accuracy rate and efficiency.It is feasibility.
孙冬 , 周俊 , 魏勇 . 基于Haar小波的虹膜特征提取算法 [J ] . 科学技术与工程 , 2014 , 1 ( 14 ): 81 - 85 .
SUN D , ZHOU J , WEI Y . Iris feature extraction based on Haar wavelet [J ] . Science Technology and Engineering , 2014 , 1 ( 14 ): 81 - 85 .
FAROUK R M . Iris recognition based on elastic graph matching and Gabor wavelets [J ] . Computer Vision and Image Understanding , 2011 , 115 ( 8 ): 1239 - 1244 .
RAJBHOJ S M , MANE P B . Haar wavelet approach of iris texture extraction for personal recognition [J ] . International Journal of Innovative Technology and Exploring Engineering , 2013 , 3 ( 2 ): 22 - 25 .
KARTHIKEYAN V . Novel algorithm for iris biometrics using fast wavelet transforms [J ] . International Journal of Engineering Sciences and Research Technology , 2014 , 3 ( 3 ): 1481 - 1484 .
RAHULKAR A D , JADHAV D V , HOLAMBE R S . Fast discrete curvelet transform based anisotropic iris coding and recognition using k-out-of-n: a fused post-classifier [J ] . Machine Vision and Applications , 2012 , 23 ( 6 ): 1115 - 1127 .
DHAGEA S S , HEGDEA S S , MANIKANTANA K , et al . DWT-based feature extraction and radon transform based contrast enhancement for improved iris recognition [J ] . Procedia Computer Science , 2015 , 1 ( 45 ): 256 - 265 .
ABDULLAH H N , ABDULLAH A A . Iris recognition using wavelet transform and artificial neural networks [J ] . Engineering& Technology Journal , 2015 , 33 ( 6 ): 877 - 888 .
CANDES E J , DEMANET L , DONOHO D L , et al . Fast discrete curvelet transforms [J ] . Multiscale Modeling & Simulation , 2006 , 5 ( 3 ): 861 - 899 .
VAPNIKV N . An overview of statistical learning theory [J ] . IEEE Transactions on Neural Networks , 1999 , 10 ( 5 ): 988 - 999 .
LIN C F , WANG S D . Fuzzy support vector machines [J ] . IEEE Transactions on Neural Networks , 2002 , 13 ( 2 ): 464 - 471 .
PROENCA H , ALEXANDRE LA . UBIRIS: a noisy iris image database [J ] . Lecture Notes in Computer Science , 2005 ( 3617 ): 970 - 977 .
CASIA-Iris V2 [EB/OL ] . ( 2007 - 12 - 20 )[ 2015 - 12 - 14 ] . http://www.cbsr.ia.ac.cn/IrisDatabase.htm http://www.cbsr.ia.ac.cn/IrisDatabase.htm .
0
浏览量
563
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构