浏览全部资源
扫码关注微信
1. 宁波大学通信技术研究所,浙江 宁波 315211
2. 浙江万里学院电子信息学院,浙江 宁波 315100
[ "闫玉芝(1989-),男,宁波大学硕士生,主要研究方向为认知无线电频谱感知、压缩感知。" ]
[ "李有明(1963-),男,宁波大学教授、博士生导师,主要研究方向为宽带通信、电力线通信、协作中继、认知无线电等。" ]
[ "周桂莉(1992-),女,宁波大学硕士生,主要研究方向为水声通信中资源分配。" ]
[ "吴耀辉(1979-),男,宁波大学博士生,浙江万里学院讲师,主要研究方向为OFDM系统资源分配和频谱感知。" ]
网络出版日期:2016-11,
纸质出版日期:2016-11-20
移动端阅览
闫玉芝, 李有明, 周桂莉, 等. 基于加权一致优化的宽带分布式协作压缩频谱感知算法[J]. 电信科学, 2016,32(11):71-76.
Yuzhi YAN, Youming LI, Guili ZHOU, et al. Wideband distributed cooperative compressed spectrum sensing algorithm based on weighted consensus optimization[J]. Telecommunications science, 2016, 32(11): 71-76.
闫玉芝, 李有明, 周桂莉, 等. 基于加权一致优化的宽带分布式协作压缩频谱感知算法[J]. 电信科学, 2016,32(11):71-76. DOI: 10.11959/j.issn.1000-0801.2016259.
Yuzhi YAN, Youming LI, Guili ZHOU, et al. Wideband distributed cooperative compressed spectrum sensing algorithm based on weighted consensus optimization[J]. Telecommunications science, 2016, 32(11): 71-76. DOI: 10.11959/j.issn.1000-0801.2016259.
宽带分布式协作压缩频谱感知不仅降低过高的采样速率,而且改善在低信噪比环境下的频谱感知性能。为进一步提高频谱感知性能,提出一种基于加权一致优化的宽带分布式协作压缩频谱感知算法。该算法根据当前迭代重构出的频谱信号设定下一次迭代重构的权值,促使频谱信号上存在授权用户的子频段产生信号值,降低重构出错的可能性。仿真结果表明,该算法不仅能够增大频谱重构的准确性,而且能够降低感知过程的时间和通信开销,改善频谱感知性能。
Wideband distributed cooperative spectrum sensing based on compressed sensing can not only reduce high sampling rate
but also improve the spectrum sensing performance in low signal to noise ratio environment.In order to further enhance the spectrum sensing performance
a wideband distributed cooperative compressed spectrum sensing algorithm based on weighted consensus optimization was proposed.In this algorithm
the next iterative reconstruction weights were determined according to the current iterative reconstructed spectrum signal
which can encourage the sub-band occupied by primary user to generate signal value and decrease the likelihood of incorrect reconstruction.Simulation results show that the proposed algorithm can not only increases the spectral reconstruction accuracy
but also reduces time and communication costs of the sensing process
and improves the spectrum sensing performance.
WANG B , LIU K J R . Advances in cognitive radio networks:a survey [J ] . IEEE Journal of Selected Topics in Signal Processing , 2011 , 5 ( 1 ): 5 - 23 .
MITOLA J I , MAGUIRE G Q . Cognitive radio:making software radios more personal [J ] . IEEE Personal Communications , 1999 , 6 ( 4 ): 13 - 18 .
WANG Y , TIAN Z , FENG C . Collecting detection diversity and complexity gains in cooperative spectrum sensing [J ] . IEEE Transactions on Wireless Communications , 2012 , 11 ( 8 ): 2876 - 2883 .
QIN Z , GAO Y , PLUMBLEY M D , et al . Wideband spectrum sensing on real-time signals at sub-nyquist sampling rates in single and cooperative multiple nodes [J ] . IEEE Transactions on Signal Processing , 2016 , 64 ( 12 ): 3106 - 3117 .
TIAN Z . Compressed wideband sensing in cooperative cognitive radio networks [C ] // IEEE Global Telecommunications Conference , November 30 - December 4 , 2008 , Piscataway,NJ,USA . New Jersey : IEEE Press , 2008 : 1 - 5 .
ZENG F , LI C , TIAN Z . Distributed compressive spectrum sensing in cooperative multi-hop cognitive networks [J ] . IEEE Journal of Selected Topics in Signal Processing , 2011 , 5 ( 1 ): 37 - 48 .
JIANG J , SUN H , BAGLEE D , et al . Achieving autonomous compressive spectrum sensing for cognitive radios [J ] . IEEE Transactions on Vehicular Technology , 2016 , 65 ( 3 ): 1281 - 1291 .
BAZERQUE J A , GIANNAKIS G B . Distributed spectrum sensing for cognitive radio networks by exploiting sparsity [J ] . IEEE Transactions on Signal Processing , 2010 , 58 ( 3 ): 1847 - 1862 .
DONOHO D L . Compressed sensing [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 - 1306 .
CANDE J , WAKIN M B . An introduction to compressive sampling [J ] . IEEE Signal Processing Magazine , 2008 , 25 ( 2 ): 21 - 30 .
CANDES E J , WAKIN M B , BOYD S P . Enhancing sparsity by reweightedminimization [J ] . Journal of Fourier Analysis and Applications , 2008 , 14 ( 5-6 ): 877 - 905 .
SHI W , LING Q , YUAN K , et al . On the linear convergence of the ADMM in decentralized consensus optimization [J ] . IEEE Transactions on Signal Processing , 2014 , 62 ( 7 ): 1750 - 1761 .
0
浏览量
372
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构