浏览全部资源
扫码关注微信
[ "潘剑飞(1991-),男,宁波大学信息科学与工程学院硕士生,主要研究方向为大数据、数据挖掘。" ]
[ "徐丽丽(1993-),女,宁波大学信息科学与工程学院硕士生,主要研究方向为大数据、数据挖掘。" ]
[ "董一鸿(1969-),男,博士,宁波大学信息科学与工程学院教授,主要研究方向为大数据、数据挖掘和人工智能。" ]
网络出版日期:2017-01,
纸质出版日期:2017-01-15
移动端阅览
潘剑飞, 徐丽丽, 董一鸿. 动态社区演化研究进展[J]. 电信科学, 2017,33(1):24-33.
Jianfei PAN, Lili XU, Yihong DONG. Research progress of dynamic community evolution[J]. Telecommunications science, 2017, 33(1): 24-33.
潘剑飞, 徐丽丽, 董一鸿. 动态社区演化研究进展[J]. 电信科学, 2017,33(1):24-33. DOI: 10.11959/j.issn.1000-0801.2017026.
Jianfei PAN, Lili XU, Yihong DONG. Research progress of dynamic community evolution[J]. Telecommunications science, 2017, 33(1): 24-33. DOI: 10.11959/j.issn.1000-0801.2017026.
社区结构是社会网络普遍存在的拓扑特性之一。挖掘社会网络中的社区结构、探测并预测社区结构的变化是社会网络研究中重要的研究课题。主要从时间片处理和动态增量的策略对动态社区演化进行阐述,时间片处理策略介绍了时间片的对比演化、聚类演化、融合演化的研究方法;动态增量策略描述了核心社区、聚类、指标的动态演化的研究方法;最后对社区演化预测的框架进行了归纳总结。
Community structure is one of the topological characteristics of social network.It is an important research topic in social network research to explore the structure of community
detect and predict the change of community structure.The evolution of dynamic community was discussed from time slicing processing and dynamic increment strategies.The time slice processing strategy introduced the comparative evolution of the time slice
the clustering evolution of the time slice
and the fusion evolution of the time slice.The dynamic increment strategy described the dynamic evolution of the core community
the dynamic evolution of the cluster and the dynamic evolution of the index.Finally
the framework of community evolution prediction was summarized.
WANG L , CHENG X Q . Dynamic community online social network discovery and evolution [J ] . Chinese Journal of Computers , 2015 , 38 ( 2 ): 219 - 237 .
GIRVAN M , NEWMAN M E J . Community structure in social and biological networks [J ] . Proceedings of the National Academy of sciences of United States of America , 2002 , 99 ( 12 ): 7821 - 7826 .
PEI L , LAKSHMANAN L V S , MILIOS E E . Incremental cluster evolution tracking from highly dynamic network data [C]// IEEE International Conference on Data Engineering,March 31-April 4,2014,Chicago,USA . New Jersey : IEEE Press , 2014 : 3 - 14 .
BRÓDKA P , SAGANOWSKI S , KAZIENKO P . GED:the method for group evolution discovery in social networks [J ] . Social Network Analysis and Mining , 2013 , 3 ( 1 ): 1 - 14 .
WU T , CHEN L , GUAN Y , et al . LPA based hierarchical community detection [C]//IEEE International Conference on Computational Science and Engineering,August 22-24,2014,Vancouver,Canada . New Jersey : IEEE Press , 2014 : 185 - 191 .
ZHANG S , WANG R , ZHANG X . Identification of overlapping community structure in complex networks using fuzzy C-means clustering [J ] . Physics A:Statistical Mechanics and its Applications , 2007 , 374 ( 1 ): 483 - 490 .
LANCICHINETTI A , FORTUNATO S , KERTÉSZ J . Detecting the overlapping and hierarchical community structure of complex networks [J ] . New Journal of Physics , 2009 , 11 ( 3 ): 19 - 44 .
TAKAFFOLI M , SANGI F , FAGNAN J . Community evolution mining in dynamic social networks [J ] . Procedia-Social and Behavioral Sciences , 2011 , 22 ( 22 ): 49 - 58 .
WANG Y , WU B , DU N . Community evolution of social network:feature,algorithm and model [J ] . Physics , 2008 ( 3 ): 31 - 46 .
LIN Y R , CHI Y , ZHU S . Facetnet:a framework for analyzing communities and their evolutions in dynamic networks [C]//17th International Conference on World WideWeb,April 21-25,2008,Beijing,China . New York : ACM Press , 2008 : 685 - 694 .
CHAKRABARTI D , KUMAR R , TOMKINS A . Evolutionary clustering [C]//12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 5-8,2011,Philadelphia,PA,USA . New Jersey : IEEE Press , 2011 : 332 - 337 .
PALLA G , VICSEK T . Quantifying social group evolution [J ] . Nature , 2007 , 446 ( 7136 ): 664 - 7 .
PALLA G , BARABÁSI A , VICSEK T . Community dynamics in social networks [C]//SPIE 4th International Symposium on Fluctuations and Noise,International Society for Optics and Photonics,July 2-August 10,2007,San Diego,USA . New Jersey : IEEE Press , 2007 : 273 - 287 .
PRAT P , REZ A , DOMINGUEZ D , et al . Put three and three together:triangle-driven community detection [J ] . ACM Transactions on Knowledge Discovery from Data , 2016 , 10 ( 3 ): 1 - 42 .
LIU Y , GAO H , KANG X . Fast community discovery and its evolution tracking in time-evolving social networks[C]//IEEE International Conference on Data Mining Workshop,November 14-17,2015,Atlantic,NJ,USA . New Jersey : IEEE Press , 2015 : 13 - 20 .
FALKOWSKI T , BARTH A . Studying community dynamics with an incremental graph mining algorithm [C]//Learning from the Past & Charting the Future of the Discipline Americas Conference on Information Systems,August 14-17,2008,Toronto,Canada . New Jersey : IEEE Press , 2008 .
LI X , WU B , GUO Q , et al . Dynamic community detection algorithm based on incremental identification [C]//IEEE International Conference on Data Mining Workshop,March 3-11,2015,Toronto,Canoda , New Jersey : IEEE Press , 2015 : 900 - 907 .
CHAKRABORTY T , SRINIVASAN S , GANGULY N . On the permanence of vertices in network communities [C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 24-27,2014,New York,NY,USA . New York : ACM Press , 2014 : 1396 - 1405 .
LI J , HUANG L , BAI T . CDBIA:A dynamic community detection method based on incremental analysis [C]//International Conference on Systems and Informatics,May 19-21,2012,Yantai,China . New Jersey : IEEE Press , 2012 : 2224 - 2228 .
SAGANOWSKI,STANISLAW.Predicting community evolution in social networks [J ] . Entropy , 2015 , 17 ( 5 ): 3053 - 3096 .
SHAHRI M , GUNASHEKAR S , DOMARVS M V , et al . Predictive analysis of temporal and overlapping community structures in social media [C]//International Conference Companion on World Wide Web,April 11-15,2016,Montreal,Canada . New Jersey : IEEE Press , 2016 .
TAKAFFOLI M , RABBANY R , ZAIANE O R . Community evolution prediction in dynamic social networks[C]//IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining,August 17-20,2014,Beijing,China . New Jersey : IEEE Press , 2014 : 9 - 16 .
0
浏览量
1375
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构