浏览全部资源
扫码关注微信
[ "严军荣(1974-),男,博士,杭州电子科技大学讲师,主要研究方向为无线通信与软件定义网络。" ]
[ "叶景畅(1992-),男,杭州电子科技大学硕士生,主要研究方向为软件定义网络。" ]
[ "潘鹏(1983-),男,博士,杭州电子科技大学副教授,主要研究方向为多用户检测技术、协作通信理论与技术。" ]
网络出版日期:2017-03,
纸质出版日期:2017-03-20
移动端阅览
严军荣, 叶景畅, 潘鹏. 一种大象流两级识别方法[J]. 电信科学, 2017,33(3):36-43.
Junrong YAN, Jingchang YE, Peng PAN. A two-level method for elephant flow identification[J]. Telecommunications science, 2017, 33(3): 36-43.
严军荣, 叶景畅, 潘鹏. 一种大象流两级识别方法[J]. 电信科学, 2017,33(3):36-43. DOI: 10.11959/j.issn.1000-0801.2017076.
Junrong YAN, Jingchang YE, Peng PAN. A two-level method for elephant flow identification[J]. Telecommunications science, 2017, 33(3): 36-43. DOI: 10.11959/j.issn.1000-0801.2017076.
基于大象流的识别准确度高且开销低,对于解决SDN流量管理过程中控制器单点故障问题具有重要意义。针对现有大象流识别方法识别开销大的问题,提出一种大象流两级识别方法。该方法在第一阶段提出基于TCP发送队列的可疑大象流识别算法,在第二阶段提出基于流持续时间的真实大象流识别算法;第一阶段是在端系统中识别可疑大象流,用于降低第二阶段真实大象流识别过程中SDN控制器所需监测的网络流数量。实验分析表明,在保证大象流识别的高准确度前提下,大象流两级识别方法较基于采样的大象流识别方法可以降低约85%的控制器识别开销。
The high accuracy and low overhead of elephant flows identification have a great meaning on solving the controller's single point of failure problem in SDN traffic management.Aiming at the problem of high overhead of the existing elephant flows identification method
a two-level method for elephant flows identification was proposed which included a suspicious elephant detection algorithm based on TCP write-queue in the first stage and areal elephant detection algorithm based on flow duration in the second stage.During the first stage
the suspicious elephant flows were identified in the end systems to reduce the amount of flows monitored by the SDN controller at the second stage.Analysis and simulation prove that
under the premise of ensuring the accuracy of elephant flow identification
the two-level method for elephant flows identification reduces about 85% overhead of identification compared with sampling identification method.
ZUO Q Y , CHEN M , ZHAO G S , et al . OpenFlow-based SDN technologies [J ] . Journal of Software (Chinese) , 2013 ( 5 ): 1078 - 1097 .
MCKEOWN N , ANDERSON T , BALAKRISHNAN H , et al . OpenFlow: enabling innovation in campus networks [J ] . ACM SIGCOMM Computer Communication Review , 2008 , 38 ( 2 ): 69 - 74 .
CRISTIAN E , VARGHESE G . New directions in traffic measurement and accounting: focusing on the elephants, ignoring the mice [J ] . ACM Transactions on Computer Systems (TOCS) , 2003 , 21 ( 3 ): 270 - 313 .
BENSON T , AKELLA A , MALTZ D A . Network traffic characteristics of data centers in the wild [C ] // The 10th ACM SIGCOMM Conference on Internet Measurement , November 1 - 30 , 2010 , Melbourne, Australia . New York : ACM Press , 2010 : 267 - 280 .
XIA J B , REN G M . Survey on elephant flow identifying methods [J ] . Control and Decision , 2013 , 28 ( 6 ): 801 - 807 .
BI C H , LUO X , YE T , et al . On precision and scalability of elephant flow detection in data center with SDN [C ] // 2013 IEEE Globecom Workshops(GC Wkshps) , December 9 - 13 , 2013 , Atlanta,Georgia,USA . New Jersey : IEEE Press , 2013 : 1227 - 1232 .
MORI T , UCHIDA M , GOTO S . Identifying elephant flows through periodically sampled packets [C ] // The 4th ACM SIGCOMM Conference on Internet Measurement , Oct 25 - 27 , 2004 , Taormina, Sicily, Italy . New York : ACM Press , 2004 : 115 - 120 .
ROBERT B , STROTHE R M . MJRTY-a fast majority vote algorithm [M ] . Amsterdam: Springer Netherlands , 1991 .
BAI L , LIU W J . Algorithm based on multiple filters for elephant flows identification [C ] // 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE) , December 16 - 18 , 2011 , Changchun, China . New Jersey : IEEE Press , 2011 : 1084 - 1087 .
ZHAO X H , LI M H . Large flow identification based on counting bloom filter and space saving [J ] . Journal of University of Chinese Academy of Sciences , 2015 , 32 ( 3 ): 391 - 397 .
SMITHA , KIM I , NARASIMHAREDDY A L . Identifying long-term high-bandwidth flows at a router [C ] // The 8th International Conference on High Performance Computing , December 17 - 20 , 2001 , Hyderabad, India . Heidelberg: Springer , 2001 : 361 - 371 .
LIU X L , LIU Y , WANG C L . An identification algorithm of network elephant flow based on FEFS and CBF [J ] . Computer Engineering , 2015 , 41 ( 9 ): 68 - 73 .
BAI L , TIAN L Q , CHEN C . Elephant flow detection algorithm for high speed networks based on flow sampling and LRU [J ] . Computer Application and Software , 2016 , 33 ( 4 ): 111 - 115 .
XIE D Q , ZHOU Z H , LUO J W . An algorithm based on LRU and SCBF for elephant flows identification and its application in DDoS defense [J ] . Journal of Computer Research and Development , 2011 , 48 ( 8 ): 1517 - 1523 .
TOOTOONCHIAN A , GHOBADI M , GANJALI Y . OpenTM:traffic matrix estimator for OpenFlow networks [C ] // 2010 International Conference on Passive and Active Network Measurement , April 7 - 9 , 2010 , Zurich, Switzerland . Heidelberg: Springer , 2010 : 201 - 210 .
BENSON T , ANAND A , AKELLA A , et al . MicroTE: fine grained traffic engineering for data centers [C ] // The Seventh Conference on Emerging Networking Experiments and Technologies , December 6 - 9 , Tokyo, Japan . New York : ACM Press , 2011 : 8 .
LIN C Y , CHIEN C , CHANG J W , et al . Elephant flow detection in datacenters using openflow-based hierarchical statistics pulling [C ] // 2014 IEEE Global Communications Conference , December 8 - 12 , 2014 , Austin, Texas, USA . New Jersey : IEEE Press , 2014 : 2264 - 2269 .
CURTIS A R , KIM W , YALAGANDULA P . Mahout:low-overhead datacenter traffic management using end-host-based elephant detection [C ] // 2011 IEEE INFOCOM , April 10 - 15 , Shanghai, China . New Jersey : IEEE Press , 2011 : 1629 - 1637 .
CHAO S C , LIN K C J , CHEN M S . Flow classification for software-defined data centers using stream mining [J ] . IEEE Transactions on Services Computing . doi:10.1109/TSC 2016 : 2597846 .
FAN D D , MO L . Analysis of Linux kernel [M ] . Beijing : China Machine Press , 2010 .
OpenFlowSwitch Specification. Open networking foundation, version 1.3.0(wire protocol 0x04) [S ] . IEEE Transactions on Information Theory , 2012 .
KANDULA S , SENGUPTA S , GREENBERG A , et al . The nature of data center traffic: measurements & analysis [C ] // The 9th ACM SIGCOMM Conference on Internet Measurement Conference , November 4 - 6 , 2009 , Chicago, Illinois, USA . New York : ACM Press , 2009 : 202 - 208 .
0
浏览量
1376
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构