浏览全部资源
扫码关注微信
1. 宁波大学信息科学与工程学院,浙江 宁波 315211
2. 浙江工商职业技术学院,浙江 宁波 315012
[ "吕新荣(1976-),男,宁波大学信息科学与工程学院博士生,主要研究方向为电力线通信、稀疏信号处理、压缩感知。" ]
[ "李有明(1963-),男,宁波大学信息科学与工程学院教授、博士生导师,主要研究方向为宽带通信、电力线通信、协作中继、认知无线电等。" ]
[ "余明宸(1991-),男,宁波大学信息科学与工程学院硕士生,主要研究方向为电力线通信系统脉冲干扰。" ]
网络出版日期:2017-09,
纸质出版日期:2017-09-20
移动端阅览
吕新荣, 李有明, 余明宸. 基于稀疏贝叶斯学习的电力线载波通信接收机设计[J]. 电信科学, 2017,33(9):92-99.
Xinrong LV, Youming LI, Mingchen YU. Design of transceivers based on sparse Bayesian learning for power line carrier communications[J]. Telecommunications science, 2017, 33(9): 92-99.
吕新荣, 李有明, 余明宸. 基于稀疏贝叶斯学习的电力线载波通信接收机设计[J]. 电信科学, 2017,33(9):92-99. DOI: 10.11959/j.issn.1000-0801.2017196.
Xinrong LV, Youming LI, Mingchen YU. Design of transceivers based on sparse Bayesian learning for power line carrier communications[J]. Telecommunications science, 2017, 33(9): 92-99. DOI: 10.11959/j.issn.1000-0801.2017196.
针对多径信道和脉冲噪声对电力线载波通信系统性能影响的问题,提出了一种能有效对抗多径信道和脉冲噪声影响的电力线通信系统接收机设计方案。该方案将时域上的电力线信道参数和脉冲噪声联合视作稀疏向量,然后利用稀疏贝叶斯理论联合估计电力线信道和脉冲噪声,从而在接收端得以去除脉冲噪声及补偿信道增益。仿真结果表明,与传统将信道估计与脉冲噪声抑制单独考虑的传统接收机相比,本文提出的接收机方案在误符号率和误比特率等性能指标上有较好的提升。
Aiming at the problem of the influence of multipath channel and impulse noise on the performance of power line carrier communication system
a transceiver scheme for power line communication system was proposed which could effectively combat the influence of multipath channel and impulse noise.Firstly
the power line channel impulse response and the impulsive noise in the time domain were jointly viewed as a sparse vector.Then
the sparse Bayesian learning theory was adopted to estimate the power line channel and impulse noise jointly.The impulse noise was removed and the channel gain was compensated at the receiver.The simulation result shows that the proposed receiver scheme has better performance than traditional receiver considering channel estimation and impulse noise suppression separately.
CANO C , PITTOLO A , MALONE D , et al . State of the art in power line communications: from the applications to the medium [J ] . IEEE Journal on Selected Areas in Communications , 2016 , 34 ( 7 ): 1935 - 1952 .
BERGER L T , SCHWAGER A , PAGANI P , et al . MIMO power line communications [J ] . IEEE Communications Surveys & Tutorials , 2014 , 17 ( 1 ): 106 - 124 .
CORCHADO J A , CORTÉS J A , CAÑETE F J , et al . An MTL-based channel model for indoor broadband MIMO power line communications [J ] . IEEE Journal on Selected Areas in Communications , 2016 , 34 ( 7 ): 2045 - 2055 .
ZIMMERMANN M , DOSTERT K . A multipath model for the powerline channel [J ] . IEEE Transactions on Communications , 2002 , 50 ( 4 ): 553 - 559 .
ZIMMERMANN M , DOSTERT K . Analysis and modeling of impulse noise in broadband powerline communications [J ] . IEEE Transactions on Electromagnetic Compatibility , 2002 , 44 ( 1 ): 249 - 258 .
杨昉 , 何丽峰 , 潘长勇 . OFDM原理与标准-通信技术的演进 [M ] . 北京 : 电子工业出版社 , 2013 .
YANG F , HE L F , PAN C Y . OFDM principles and standards:evolution of communications techniques [M ] . Beijing : Publishing House of Electronics IndustryPress , 2013 .
LIU Y , TAN Z , HU H , et al . Channel estimation for OFDM [J ] . IEEE Communications Surveys & Tutorials , 2014 , 16 ( 4 ): 1891 - 1908 .
PRASAD R , MURTHY C R , RAO B D . Joint approximately sparse channel estimation and data detection in OFDM systems using sparse bayesian learning [J ] . IEEE Transactions on Signal Processing , 2014 , 62 ( 14 ): 3591 - 3603 .
DING W , LU Y , YANG F , et al . Spectrally efficient CSI acquisition for power line communications:a bayesian compressive sensing perspective [J ] . IEEE Journal on Selected Areas in Communications , 2016 , 34 ( 7 ): 2022 - 2032 .
ZHIDKOV S V . Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers [J ] . IEEE Transactions on Communications , 2008 , 56 ( 1 ): 5 - 9 .
LIN J , NASSAR M , EVANS B L . Impulsive noise mitigation in powerline communications using sparse Bayesian learning [J ] . IEEE Journal on Selected Areas in Communications , 2013 , 31 ( 7 ): 1172 - 1183 .
呙涛 , 胡国荣 . 基于稀疏贝叶斯学习的MIMO电力线脉冲噪声消除 [J ] . 电力系统自动化 , 2014 , 38 ( 14 ): 95 - 100 .
GUO T , HU G R . Impulsive noise mitigation on MIMO power line based sparse Bayesian learning [J ] . Automation of Electric Power System , 2014 , 38 ( 14 ): 95 - 100 .
NASSAR M , SCHNITER P , EVANS B L . A factor graph approach to joint OFDM channel estimation and decoding in impulsive noise environments [J ] . IEEE Transactions on Signal Processing , 2014 , 62 ( 6 ): 1576 - 1589 .
TONELLO A M , VERSOLATTO F , BÉJAR B , et al . A fitting algorithm for random modeling the PLC channel [J ] . IEEE Transactions on Power Delivery , 2012 , 27 ( 3 ): 1477 - 1484 .
CHIEN Y R . Iterative channel estimation and impulsive noise mitigation algorithm for OFDM-based receivers with application to power-line communications [J ] . IEEE Transactions on Power Delivery , 2015 , 30 ( 6 ): 2435 - 2442 .
MEHBOOB A , LI Z , KHANGOSSTAR J , et al . Joint channel and impulsive noise estimation for OFDM based power line communication systems using compressed sensing [C ] // IEEE International Symposium on Power Line Communications and its Applications,March 24-27,2013,Johannesburg,South Africa . New Jersey:IEEE Press , 2013 : 203 - 208 .
WIPF D P , RAO B D . Sparse bayesian learning for basis selection [J ] . IEEE Transactions on Signal Processing , 2004 , 52 ( 8 ): 2153 - 2164 .
0
浏览量
678
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构