浏览全部资源
扫码关注微信
[ "李创创(1991-),男,西安邮电大学无线网络安全技术国家工程实验室硕士生,主要研究方向为数据挖掘。" ]
[ "卢光跃(1971-),男,西安邮电大学无线网络安全技术国家工程实验室教授,主要研究方向为信号与信息处理、认知无线电和大数据分析。" ]
[ "王航龙(1989-),男,西安邮电大学无线网络安全技术国家工程实验室硕士生,主要研究方向为数据挖掘。" ]
网络出版日期:2017-09,
纸质出版日期:2017-09-20
移动端阅览
李创创, 卢光跃, 王航龙. 基于边界样本欠取样支持向量机的电信用户欠费分类算法[J]. 电信科学, 2017,33(9):85-91.
Chuangchuang LI, Guangyue LU, Hanglong WANG. SVM classifier for telecom user arrears based on boundary samples-based under-sampling approaches[J]. Telecommunications science, 2017, 33(9): 85-91.
李创创, 卢光跃, 王航龙. 基于边界样本欠取样支持向量机的电信用户欠费分类算法[J]. 电信科学, 2017,33(9):85-91. DOI: 10.11959/j.issn.1000-0801.2017208.
Chuangchuang LI, Guangyue LU, Hanglong WANG. SVM classifier for telecom user arrears based on boundary samples-based under-sampling approaches[J]. Telecommunications science, 2017, 33(9): 85-91. DOI: 10.11959/j.issn.1000-0801.2017208.
电信用户欠费预测是一个不平衡数据集分类问题。针对传统支持向量机(SVM)对不均衡数据集中少数类检测精度低的问题,基于分类平面由边界样本的位置决定,提出了一种通过删除部分多数类边界样本的方法来改善传统 SVM 算法的不足,将该算法和其他几种算法在电信数据和多个不平衡 UCI 数据集上的实验结果进行对比,验证所提算法对少数类的检测精度和总体评价指标都有所提高。
Telecom users’ arrears forecasting is a classification problem of unbalanced data set.To deal with the problem that the traditional SVM on the unbalanced date set had a low detection accuracy of minority class
a novel method was proposed.Based on the fact that the position of classification plane was determined by the boundary samples
the proposed method was implemented via removing some of samples closed to the classification plane to avoid the deficiency of the traditional SVM algorithm.Finally
the proposed method was compared with other approaches on unbalanced data sets.The simulation results show that the proposed method can not only increase the detection accuracy of minority but also improve the overall classification performance.
渠瑜 . 基于 SVM 的高不平衡分类技术研究及其在电信业的应用 [D ] . 杭州:浙江大学 , 2010 .
QU Y . Research on SVM-based highly imbalanced classification and its application in telecommunications [D ] . Hangzhou:Zhejiang University , 2010 .
VAPNIK V N . The nature of statistical learning theory [M ] . Berlin : SpringerPress , 2000 : 138 - 167 .
JAMIL S , KHAN A . Churn comprehension analysis for telecommunication industry using ALBA [C ] // ICET,IEEE,October 18-19,2016,Islamabad,Pakistan . New Jersey:IEEE Press , 2016 .
RASKUTTI B . Extreme re-balancing for SVMs:a case study [J ] . ACM Sigkdd Explorations Newsletter , 2004 , 6 ( 1 ): 60 - 69 .
KANG P , CHO S . EUS SVMs:ensemble of under-sampled SVMs for data imbalance problems [M ] . Berlin : SpringerPress , 2006 : 837 - 846 .
陶新民 , 张冬雪 , 郝思媛 , 等 . 基于谱聚类下采样失衡数据下SVM故障检测 [J ] . 振动与冲击 , 2013 , 32 ( 16 ): 30 - 36 .
TAO X M , ZHANG D X , HAO S Y , et al . Fault detection based on spectral clustering combined with under-sampling SVM under unbalanced datasets [J ] . Journal of Vibration and Shock , 2013 , 32 ( 16 ): 30 - 36 .
HE H B , EDWARDO A . Learning from imbalanced data [J ] . IEEE Transactions on Knowledge and Data Engineering , 2009 , 21 ( 8 ): 1263 - 1284 .
LIU X Y , ZHOU Z H . Exploratory under-sampling for class-imbalance learning [J ] . IEEE Transactions on Systems,Man and Cybernetics , 2009 , 39 ( 2 ): 539 - 550 .
LIN C F , WANG S D . Fuzzy support vector machines [J ] . IEEE Transactions on Neural Networks , 2002 , 13 ( 2 ): 464 - 71 .
HE H , GARCIA E A . Learning from imbalanced data [J ] . IEEE Transactions on Knowledge & Data Engineering , 2009 , 21 ( 9 ): 1263 - 1284 .
陶新民 , 郝思媛 , 张冬雪 , 等 . 基于样本特性欠取样的不均衡支持向量机 [J ] . 控制与决策 , 2013 ( 7 ): 978 - 984 .
TAO X M , HAO S Y , ZHANG D X , et al . Support vector machine for unbalanced data based on sample properties under-sampling approaches [J ] . Control and Decision , 2013 ( 7 ): 978 - 984 .
BATUWITA R , PALADE V . FSVM-CIL:fuzzy support vector machines for class imbalance learning [J ] . IEEE Transactions on Fuzzy Systems , 2010 , 18 ( 3 ): 558 - 571 .
李航 . 统计学习方法 [M ] . 北京 : 清华大学出版社 , 2012 .
LI H . Statistical learning method [M ] . Beijing : Tsinghua University PressPress , 2012 .
包志强 , 崔妍 . 电信客户欠费模型评估 [J ] . 西安邮电大学学报 , 2015 ( 4 ): 97 - 101 .
BAO Z Q , CUI Y . Telecom customer arrearages model evaluation [J ] . Journal of Xi’an University of Posts and Telecommunications , 2015 ( 4 ): 97 - 101 .
0
浏览量
707
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构