浏览全部资源
扫码关注微信
[ "王琼(1971-),女,重庆邮电大学通信与信息工程学院正高级工程师、硕士生导师,主要研究方向为移动通信。" ]
[ "叶伟(1992-),男,重庆邮电大学通信与信息工程学院硕士生,主要研究方向为大规模MIMO系统中信号检测技术。" ]
[ "吉明明(1992-),男,重庆邮电大学通信与信息工程学院硕士生,主要研究方向为非正交多址接入技术。" ]
网络出版日期:2017-09,
纸质出版日期:2017-09-20
移动端阅览
王琼, 叶伟, 吉明明. 基于消息传递的大规模多用户MIMO低复杂度的检测算法[J]. 电信科学, 2017,33(9):1-9.
Qiong WANG, Wei YE, Mingming JI. A low complexity detection algorithm for large scale multiuser MIMO based on message passing[J]. Telecommunications science, 2017, 33(9): 1-9.
王琼, 叶伟, 吉明明. 基于消息传递的大规模多用户MIMO低复杂度的检测算法[J]. 电信科学, 2017,33(9):1-9. DOI: 10.11959/j.issn.1000-0801.2017213.
Qiong WANG, Wei YE, Mingming JI. A low complexity detection algorithm for large scale multiuser MIMO based on message passing[J]. Telecommunications science, 2017, 33(9): 1-9. DOI: 10.11959/j.issn.1000-0801.2017213.
针对大规模多用户多输入多输出(MIMO)系统中基站端检测复杂度高的问题,提出了一种低复杂度、基于强制收敛的变量节点全信息高斯消息传播迭代检测(VFI-GMPID-FC)算法。首先对传统的 GMPID算法进行改进,得到VFI-GMPID算法,VFI-GMPID算法的检测性能逼近最小均方误差检测(MMSE)算法,但复杂度要大大低于MMSE算法。然后结合强制收敛思想和VFI-GMPID,提出VFI-GMPID-FC算法,进一步降低算法复杂度,提升检测效率。最后通过仿真结果表明,所提算法在保证检测性能的同时,能有效地降低算法的复杂度。
According to the problem of high complexity of base station detection in large scale multiuser multiple input multiple output (MIMO) system
a low complexity multiuser variable node full information Gaussian message passing iterative detection algorithm based on forced convergence (VFI-GMPID-FC) was proposed.Firstly
the traditional Gaussian message passing iterative detection (GMPID) algorithm was improved to obtain VFI-GMPID algorithm
the detection performance of the VFI-GMPID algorithm approximates the minimum mean square error detection (MMSE) algorithm
but the complexity was considerably less than the MMSE algorithm.Then
the VFI-GMPID-FC algorithm was proposed to reduce the complexity of the algorithm and improve the detection efficiency.Finally
the simulation results show that the proposed algorithm can effectively reduce the algorithm complexity while ensuring the detection performance.
RUSEK F , PERSSON D , LAU B K , et al . Scaling up MIMO:opportunities and challenges with very large arrays [J ] . Signal Processing Magazine IEEE , 2012 , 30 ( 1 ): 40 - 60 .
毕奇 , 谢伟良 , 陈鹏 , 等 . LTE多天线技术发展趋势 [J ] . 电信科学 , 2014 , 30 ( 10 ): 1 - 7 .
BI Q , XIE W L , CHEN P , et al . Progress and trends of multiple antennas technology in LTE network [J ] . Telecommunications Science , 2014 , 30 ( 10 ): 1 - 7 .
阳析 , 金石 . 大规模 MIMO 系统传输关键技术研究进展 [J ] . 电信科学 , 2015 , 31 ( 5 ): 28 - 35 .
YANG X , JIN S . Overview of key technologies of transmissionin massive MIMO system [J ] . Telecommunications Science , 2015 , 31 ( 5 ): 28 - 35 .
周将运 . Massive MIMO 系统的检测算法研究 [D ] . 成都:电子科技大学 , 2015 .
ZHOU J Y . Research on detection algorithms for massive MIMO systems [D ] . Chengdu:University of Electronic Science and Technology of China , 2015 .
MOALLEMI C C , VAN ROY B . Convergence of min-sum message passing for quadratic optimization [J ] . IEEE Transactions on Information Theory , 2009 , 55 ( 5 ): 2413 - 2423 .
WEISS Y , FREEMAN W T . Correctness of belief propagation in gaussian graphical models of arbitrary topology [J ] . Neural Computation , 2001 , 13 ( 10 ):2173.
SU Q , WU Y C . Convergence analysis of the variance in gaussian belief propagation [J ] . IEEE Transactions on Signal Processing , 2014 , 62 ( 19 ): 5119 - 5131 .
GUO Q , PING L . LMMSE turbo equalization based on factor graphs [J ] . IEEE Journal on Selected Areas in Communications , 2008 , 26 ( 2 ): 311 - 319 .
MONTANARI A , PRABHAKAR B , TSE D . Belief propagation based multi-user detection [C ] // Allerton Conference on Communication,May 22,2006,Monticello,USA.[S.l.:s.n] . 2006 : 1 - 9 .
ABBAS S M , FAN Y Z , CHEN J , et al . Low complexity belief propagation polar code decoder [C ] // 2015 IEEE Workshop on Signal Processing Systems (SiPS),October 14-16,2015,Hangzhou,China . New Jersey:IEEE Press , 2015 : 1 - 6 .
WU S , KUANG L , NI Z , et al . Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing [J ] . IEEE Journal of Selected Topics in Signal Processing , 2014 , 8 ( 5 ): 902 - 915 .
YOON S , CHAE C B . Low-complexity MIMO detection based on belief propagation over pairwise graphs [J ] . IEEE Transactions on Vehicular Technology , 2014 , 63 ( 5 ): 2363 - 2377 .
YUE Z , GUO Q , XIANG W . Complex Gaussian belief propagation algorithms for distributed iterative receiver [C ] // 2014 IEEE 25th Annual International Symposium on Personal,Indoor,and Mobile Radio Communication (PIMRC),September 2-5,2014,Washington,USA . New Jersey:IEEE Press , 2014 : 1908 - 1912 .
HAN K , HU J , CHEN J , et al . A high performance massive MIMO detector based on log-domain belief-propagation [C ] // International Conference on Asic,November 3-6,2015,Chengdu,China . New Jersey:IEEE Press , 2015 : 1 - 4 .
YUAN Z , ZHANG C , WANG Z , et al . An Auxiliary Variable-aided hybrid message passing approach to joint channel estimation and decoding for MIMO-OFDM [J ] . IEEE Signal Processing Letters , 2017 ( 99 ):1.
KSCHISCHANG F R , FREY B J , LOELIGER H A . Factor graphs and the sum-product algorithm [J ] . IEEE Transactions on Information Theory , 2001 , 47 ( 2 ): 498 - 519 .
LOELIGER H A . An introduction to factor graphs [J ] . IEEE Signal Processing Magazine , 2004 , 21 ( 1 ): 28 - 41 .
CHOI B J , SUNWOO M H . Simplified forced convergence decoding algorithm for low power LDPC decoders [C ] // 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS),November 17-20,2014,Ishigaki,Japan . New Jersey:IEEE Press , 2014 : 663 - 666 .
LIU X , SIMEONE O , ERKIP E . Energy-efficient sensing and communication of parallel Gaussian sources [J ] . IEEE Transactions on Communications , 2012 , 60 ( 12 ): 3826 - 3835 .
KAFEDZISKI V . Rate allocation for transmission of two Gaussian sources over multiple access fading channels [J ] . IEEE Communications Letters , 2012 , 16 ( 11 ): 1784 - 1787 .
VERDU S . Multiuser detection [M ] . Cambridge : Cambridge University PressPress , 1998 .
AXELSSON O . Iterative solution methods [M ] . Cambridge : Cambridge University PressPress , 1994 .
0
浏览量
166
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构