浏览全部资源
扫码关注微信
[ "王潇(1993-),女,宁波大学信息科学与工程学院硕士生,主要研究方向为数字图像取证与信息安全。" ]
[ "张荣(1974-),女,博士,宁波大学副教授,主要研究方向为数字取证与信息安全。" ]
[ "郭立君(1970-),男,博士,宁波大学教授,主要研究方向为计算机视觉与模式识别、移动互联网及其应用。" ]
网络出版日期:2017-08,
纸质出版日期:2017-08-15
移动端阅览
王潇, 张荣, 郭立君. 顽健合成图像篡改检测及定位[J]. 电信科学, 2017,33(8):120-129.
Xiao WANG, Rong ZHANG, Lijun GUO. Robust tampering detection and localization of composite image[J]. Telecommunications science, 2017, 33(8): 120-129.
王潇, 张荣, 郭立君. 顽健合成图像篡改检测及定位[J]. 电信科学, 2017,33(8):120-129. DOI: 10.11959/j.issn.1000-0801.2017214.
Xiao WANG, Rong ZHANG, Lijun GUO. Robust tampering detection and localization of composite image[J]. Telecommunications science, 2017, 33(8): 120-129. DOI: 10.11959/j.issn.1000-0801.2017214.
针对自然图像与高度仿真的计算机生成图像的合成图像篡改检测问题,提出在YCbCr颜色空间基于差分直方图和中心对称局部二进制模式提取图像块颜色和纹理特征的方法,通过训练后验概率支持向量机模型对待测图像块进行识别。在不重叠分块情况下先大致判断篡改区域,然后在该区域内逐像素分块判别,最终实现篡改区域精确定位。实验结果表明,对128 dpi × 128 dpi图像块的识别率达到94.75%,高于现有方法;对合成图像篡改区域能够实现精确定位,且对旋转、缩放操作表现出较好的顽健性。
Aiming at the problem of tamper detection of composite image of natural images and highly simulated computer-generated images
a method of extracting image block color and texture feature based on differential histogram and local binary texture descriptor in YCbCr color space was proposed.By training posterior probability support vector machine
the image block to be measured was identified.In the case of non-overlapping block
the approximate tampering area was general judged
then the block was discriminated by pixel in the region
ultimately the accurate location of tampering area was achieved.The experimental results show that the recognition rate of 128 dpi×128 dpi image blocks is 94.75%
which is higher than other methods.The tapering region of the synthesized image can be precisely positioned
and the rotation and scaling operation show good coercivity.
GAO S , ZHANG C , WU C L , et al . A hybrid feature based method for distinguishing computer graphics and photo-graphic image [C ] // International Workshop on Digital Watermarking,September 17-19,2013,Beijing,China . Berlin:Springer Berlin Heidelberg , 2013 : 303 - 313 .
HOLMES O , BANKS M S , FARID H . Assessing and improving the identification of computer-generated portraits [J ] .ACM Transactions on Applied Perception (TAP),2016,13(2):7. ACM Transactions on Applied Perception (TAP) , 2016 , 13 ( 2 ):7.
AYYALASOMAYAJULA R S , PANKAJAKSHAN V . Differentiating photographic and PRCG images using tampering localization features [C ] // International Conference on Computer Vision and Image Processing,January 12-13,2016,Singapore.[S.l.:s.n] . 2017 : 429 - 438 .
王亚东 , 张荣 , 蒋桧慧 , 等 . 引入垂直全局表观约束的中层特征行人再识别 [J ] . 电信科学 , 2017 , 33 ( 4 ): 114 - 125 .
WANG Y D , ZHANG R , JIANG H H , et al . Person re-identification using mid-level features with vertical global appearance constraint [J ] . Telecommunications Science , 2017 , 33 ( 4 ): 114 - 125 .
LYU S , FARID H . How realistic is photorealistic? [J ] . IEEE Transactions on Signal Processing , 2005 , 53 ( 2 ): 845 - 850 .
PENG F , ZHOU D , LONG M , et al . Discrimination of natural images and computer generated graphics based on multi-fractal and regression analysis [J ] . AEU-International Journal of Electronics and Communications , 2017 ( 71 ): 72 - 81 .
WU R , LI X , YANG B . Identifying computer generated graphics via histogram features [C ] // 2011 18th IEEE International Conference on Image Processing (ICIP),September 11-14,2011,Brussels,Belgium . New Jersey:IEEE Press , 2011 : 1933 - 1936 .
LI Z , YE J , SHI Y Q . Distinguishing computer graphics from photographic images using local binary patterns [M ] . Berlin : Springer Berlin HeidelbergPress , 2012 : 228 - 241 .
OJALA T , PIETIKAINEN M , MAENPAA T . Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2002 , 24 ( 7 ): 971 - 987 .
申铉京 , 李梦臻 , 吕颖达 , 等 . 基于 LBC 的计算机生成图像盲鉴别算法 [J ] . 计算机科学 , 2015 , 42 ( 6 ): 135 - 138 .
SHEN X J , LI M Z , LV Y D , et al . Blind identification algorithm of photorealistic computer graphics based on local binary count [J ] . Computer Science , 2015 , 42 ( 6 ): 135 - 138 .
CONOTTER V , CORDIN L . Detecting photographic and computer generated composites [C ] // IS&T/SPIE Electronic Imaging.International Society for Optics and Photonics,August 12-14,2011,Chennai,India.[S.l.:s.n . ] , 2011 : 3238 - 3241 .
KE Y , MIN W , DU X , et al . Detecting the composite of photographic image and computer generated image combing with color,texture and shape feature [J ] . Journal of Theoretical & Applied Information Technology , 2013 , 49 ( 2 ).
CHANG C C , LIN C J . LIBSVM:a library for support vector machines [J ] . ACM Transactions on Intelligent Systems and Technology(TIST) , 2011 , 2 ( 3 ):27.
裴安山 , 王让定 , 严迪群 . 基于设备本底噪声频谱特征的手机来源识别 [J ] . 电信科学 , 2017 , 33 ( 1 ): 85 - 94 .
PEI A S , WANG R D , YAN D Q . Cell-phone origin identification based on spectral features of device self-noise [J ] . Telecommunications Science , 2017 , 33 ( 1 ): 85 - 94 .
PLATT J . Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods [J ] . Advances in Large Margin Classifiers , 2000 , 10 ( 4 ): 61 - 74 .
CHEN W . Detection of digital image and video forgeries [D ] . Newark:New Jersey Institute of Technology , 2008 .
MÄENPÄÄ A , PIETIKÄ M . Texture analysis with local binary patterns [J ] . Handbook of Pattern Recognition and Computer Vision , 2005 ( 3 ): 197 - 216 .
NG T T , CHANG S F , HSU J , et al . Columbia photographic images and photorealistic computer graphics dataset [R ] . 2005 .
0
浏览量
642
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构