浏览全部资源
扫码关注微信
[ "李倩(1992-),女,武汉大学电子信息学院硕士生,主要研究方向为大数据分析与挖掘、移动互联网等。" ]
[ "江昊(1976-),男,武汉大学电子信息学院教授、博士生导师,主要研究方向为大数据分析与挖掘、移动互联网、无线网络、空间综合信息网络等。" ]
[ "杨锦涛(1993-),男,武汉大学电子信息学院硕士生,主要研究方向为大数据分析与挖掘、移动互联网、物联网等。" ]
网络出版日期:2017-10,
纸质出版日期:2017-10-15
移动端阅览
李倩, 江昊, 杨锦涛. 基于手机上网记录数据的个体相遇预测[J]. 电信科学, 2017,33(10):115-123.
Qian LI, Hao JIANG, Jintao YANG. Individual encounter prediction based on mobile internet record data[J]. Telecommunications science, 2017, 33(10): 115-123.
李倩, 江昊, 杨锦涛. 基于手机上网记录数据的个体相遇预测[J]. 电信科学, 2017,33(10):115-123. DOI: 10.11959/j.issn.1000-0801.2017249.
Qian LI, Hao JIANG, Jintao YANG. Individual encounter prediction based on mobile internet record data[J]. Telecommunications science, 2017, 33(10): 115-123. DOI: 10.11959/j.issn.1000-0801.2017249.
随着反映个体位置信息的数据大量涌现,人类移动行为的研究引起了业界学者的广泛关注。针对个体相遇预测问题,使用用户手机终端上网产生的会话数据进行分析。首先基于用户相遇关系进行复杂网络建模,然后分析了网络拓扑结构特征,同时引入了用户移动性特征和上网行为特征,构造基于随机森林的预测模型,进行个体相遇预测。实验结果表明,相比于传统的网络拓扑结构特征,通过引入用户移动性特征和上网行为特征,能够显著地提升预测性能。
Studies on human movement behavior have drawn much attention with the availability of unprecedented amount of records with high accuracy involving individuals’ trajectories.The encounter prediction problem based on the session data generated by users’ mobile terminal was studied when users accessed the internet for data usage.Firstly
the network based on the encounter relations between users was constructed.Secondly
the network topology features were analyzed and user mobility characteristics and user internet behavior characteristics were introduced.Finally
the prediction model based on random forest was applied.The experimental results show that compared with the traditional network topology features
the prediction performance can be significantly improved by introducing the user mobility characteristics and user internet behavior characteristics.
卢卫 , 陆希玉 . 4G时代移动互联网的发展趋势 [J ] . 电信科学 , 2014 , 30 ( 5 ): 51 - 54 .
LU W , LU X Y . Mobile internet trends in 4G era [J ] . Telecommunications Science , 2014 , 30 ( 5 ): 51 - 54 .
林金桐 , 许晓东 . 第五代移动互联网 [J ] . 电信科学 , 2015 , 31 ( 5 ): 7 - 14 .
LIN J T , XU X D . The 5th generation of mobile internet [J ] . Telecommunications Science , 2015 , 31 ( 5 ): 7 - 14 .
中国互联网络信息中心 . 第39次中国互联网络发展状况统计报告 [R ] . 2017 .
China Internet Network Information Center . The 39th China statistical report on internet development [R ] . 2017 .
SONG C , BARABÁSI A L . Limits of predictability in human mobility [J ] . Science , 2010 , 327 ( 5968 ): 1018 - 1021 .
LU X , WETTER E , BHARTI N , et al . Approaching the limit of predictability in human mobility [J ] . Scientific Reports , 2013 , 3 ( 10 ): 2923 .
AN N T , TU M P . A Gaussian mixture model for mobile location prediction [C ] // International Conference on Research,Innovation and Vision for the Future (RIVF),February 12-14,2007,Okamoto,Kobe,Japan . New Jersey:IEEE Press , 2007 : 914 - 919 .
NOULAS A , SCELLATO S , LATHIA N , et al . Mining user mobility features for next place prediction in location-based services [C ] // International Conference on Data Mining,December 10-13,2012,Brussels,Belgium . New Jersey:IEEE Press , 2012 : 1038 - 1043 .
MONREALE A , PINELLI F , TRASARTI R , et al . Wherenext:a location predictor on trajectory pattern mining [C ] // ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,June 28-July 1,2009,Paris,France . New York:ACM Press , 2009 : 637 - 646 .
苏孝强 , 倪宏 . 基于概率的移动用户移动模型 [J ] . 微计算机信息 , 2011 , 27 ( 6 ): 1 - 3 .
SU X Q , NI H . Probability-based mobility model for mobile users [J ] . Microcomputer Information , 2011 , 27 ( 6 ): 1 - 3 .
程贤亮 , 徐小良 . 基于序列挖掘的用户移动位置预测 [J ] . 工业控制计算机 , 2013 , 26 ( 3 ): 70 - 72 .
CHENG X L , XU X L . Location prediction based on sequential mining [J ] . Industrial Control Computer , 2013 , 26 ( 3 ): 70 - 72 .
刘震 , 付俊辉 , 赵楠 . 基于移动通信数据的用户移动轨迹预测方法 [J ] . 计算机应用和软件 , 2013 , 30 ( 2 ): 10 - 17 .
LIU Z , FU J H , ZHAO N . Users mobile track prediction method based on mobile communication data [J ] . Computer Applications and Software , 2013 , 30 ( 2 ): 10 - 17 .
GONG Y , LI Y , JIN D , et al . A location prediction scheme based on social correlation [C ] // Vehicular Technology Conference,May 15-18,2011,Yokohama,Japan . New Jersey:IEEE Press , 2011 : 1 - 5 .
ZHANG D , ZHANG D , XIONG H , et al . Nextcell:predicting location using social interplay from cell phone traces [J ] . IEEE Transactions on Computers , 2015 , 64 ( 2 ): 452 - 463 .
SUN L , AXHAUSEN K W , LEE D H , et al . Understanding metropolitan patterns of daily encounters [J ] . Proceedings of the National Academy of Sciences of the United States of America , 2013 , 110 ( 34 ): 113774 - 13779 .
SOCIEVOLE A , DE RANGO F , MARANO S . Link prediction in human contact networks using online social ties [C ] // Third International Conference on Cloud and Green Computing,September 30-October 2,2013,Karlsruhe,Germany . New Jersey:IEEE Press , 2013 : 305 - 312 .
SCHOLZ C , ATZMUELLER M , STUMME G . On the predictability of human contacts:influence factors and the strength of stronger ties [C ] // International Conference on Privacy,Security,Risk & Trust,September 3-5,2012,Amsterdam,Netherlands . New Jersey:IEEE Press , 2012 : 312 - 321 .
吕琳媛 . 复杂网络链路预测 [J ] . 电子科技大学学报 , 2010 , 39 ( 5 ): 651 - 660 .
LV L Y . Link prediction on complex networks [J ] . Journal of University of Electronic Science and Technology of China , 2010 , 39 ( 5 ): 651 - 660 .
GONZÁLEZ M C , HIDALGO C A , BARABÁSI A L . Understanding individual human mobility patterns [J ] . Nature , 2008 , 453 ( 7196 ): 779 - 782 .
ZHOU T , LV L , ZHANG Y C . Predicting missing links via local information [J ] . European Physical Journal B , 2009 , 71 ( 4 ): 623 - 630 .
LV L , ZHOU T . Link prediction in weighted networks:the role of weak ties [J ] . Europhys Lett , 2010 , 89 ( 1 ): 18001 .
BREIMAN L . Random forests [J ] . Machine Learning , 2001 , 45 ( 1 ): 5 - 32 .
王铮 , 任华 , 方燕萍 . 随机森林在运营商大数据补全中的应用 [J ] . 电信科学 , 2016 , 32 ( 12 ): 7 - 12 .
WANG Z , REN H , FANG Y P . Application of random forest in big data completion [J ] . Telecommunications Science , 2016 , 32 ( 12 ): 7 - 12 .
LIBEN-NOWELL D , KLEINBERG J . The link-prediction problem for social networks [J ] . Journal of the Association for Information Science & Technology , 2007 , 58 ( 7 ): 1019 - 1031 .
0
浏览量
623
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构