浏览全部资源
扫码关注微信
1. 南京邮电大学,江苏 南京 210003
2. 山东科技大学计算机科学与工程学院,山东 青岛 266590
[ "郭冲(1993-),男,南京邮电大学硕士生,主要研究方向为智能优化算法。" ]
[ "闫文卿(1995-),男,山东科技大学计算机科学与工程学院在读,主要研究方向为智能计算在能源互联网及工业互联网中的应用。" ]
[ "许斌(1981-),男,博士,南京邮电大学讲师,主要研究方向为智能计算。" ]
网络出版日期:2017-10,
纸质出版日期:2017-10-20
移动端阅览
郭冲, 闫文卿, 许斌. 面向服务组合质量的物联网绿色能源管理[J]. 电信科学, 2017,33(10):34-42.
Chong GUO, Wenqing YAN, Bin XU. Green energy management in internet of things based on quality of service composition[J]. Telecommunications science, 2017, 33(10): 34-42.
郭冲, 闫文卿, 许斌. 面向服务组合质量的物联网绿色能源管理[J]. 电信科学, 2017,33(10):34-42. DOI: 10.11959/j.issn.1000-0801.2017268.
Chong GUO, Wenqing YAN, Bin XU. Green energy management in internet of things based on quality of service composition[J]. Telecommunications science, 2017, 33(10): 34-42. DOI: 10.11959/j.issn.1000-0801.2017268.
随着物联网技术的迅速发展,物联网环境中服务组合的能源消耗是目前有待研究的一个关键问题。当前物联网环境下服务组合的问题大多集中在基于服务质量(QoS)的评估研究,忽略了服务组合动态配置过程中的总体能源消耗。因此,提出面向物联网环境下服务组合的QoS评估模型和能源评估模型。考虑到物联网环境下的服务组合是NP难问题,将飞蛾算法(MFO)成功运用到QoS评估模型和能源评估模型。实验结果表明,MFO在上述模型中都呈现出较好的优化效果,从而实现服务组合质量在物联网环境下的绿色能源管理。
With the rapid development of internet of things technology
the energy consumption of service composition in the internet of things is a key issue to be studied.The service composition problem in the internet of things mostly focuses on the evaluation based on quality of service(QoS) at present and ignores the overall enerqy cornsumption during the dynamic deployment of service qrnposition.Therefore
a QoS evaluation model and an energy evaluation model was proposed for service composition in the internet of things.Finally
considering the service composition in the internet of things is NP hard
the moth-flame optimization (MFO) was successfully applied to the QoS evaluation model and the energy evaluation model.The experimental results show that MFO has a better optimization effect in the above model
so as to realize the green energy management of the quality of service composition in the environment of the internet of things.
AL-FUQAHA A , GUIZANI M , MOHAMMADI M , et al . Internet of things:a survey on enabling technologies,protocols,and applications [J ] . IEEE Communications Surveys Tutorials , 2015 , 17 ( 4 ): 2347 - 2376 .
KAFLE V P , FUKUSHIMA Y , HARAI H . Internet of things standardization in ITU and prospective networking technologies [J ] . IEEE Communications Magazine , 2016 , 54 ( 9 ): 43 - 49 .
JATOTH C , GANGADHARAN G R , BUYYA R . Computational intelligence based QoS-aware Web service composition:a systematic literature review [J ] . IEEE Transactions on Services Computing , 2017 , 10 ( 3 ): 475 - 492 .
LI L , LI S , ZHAO S . QoS-aware scheduling of services-oriented internet of things [J ] . IEEE Transactions on Industrial Informatics , 2014 , 10 ( 2 ): 1497 - 1505 .
YACHIR A , AMIRAT Y , CHIBANI A , et al . Event-aware framework for dynamic services discovery and selection in the context of ambient intelligence and internet of things [J ] . IEEE Transactions on Automation Science and Engineering , 2016 , 13 ( 1 ): 85 - 102 .
ZAMBRANO-BIGIARINI M , CLERC M , ROJAS R . Standard particle swarm optimisation 2011 at CEC-2013:a baseline for future PSO improvements [C ] // 2013 IEEE Congress on Evolutionary Computation,June 20-23,2013,Cancun,Mexico . New Jersey:IEEE Press , 2013 : 2337 - 2344 .
ZHOU Y , ZHANG C , ZHANG B . Multi-objective service compositon optimization using differential evolution [C ] // 2015 11th International Conference on Natural Computation (ICNC),Aug 15-17,2015,Zhangjiajie,China . New Jersey:IEEE Press , 2015 : 233 - 238 .
孙明瑞 . 服务网络中基于改进蚁群系统的服务路径选择 [J ] . 电信科学 , 2015 , 31 ( 7 ): 48 - 57 .
SUN M R . Service path selection based on improved ant colony system in service network [J ] . Telecommunication Science , 2015 , 31 ( 7 ): 48 - 57 .
许斌 . 基于多策略离散差分进化的移动互联网个性化服务组合 [J ] . 电信科学 , 2016 , 32 ( 2 ): 99 - 105 .
XU B . Personalized service composition based on multi-strategy discrete differential evolution in mobile internet [J ] . Telecommunication Science , 2016 , 32 ( 2 ): 99 - 105 .
NGOKO Y , GOLDMAN A , MILOJICIC D . Service selection in Web service compositions optimizing energy consumption and service response time [J ] . Journal of Internet Services and Applications , 2013 , 4 ( 1 ):19.
YU T , ZHANG Y , LIN K J . Efficient algorithms for Web services selection with end-to-end QoS constraints [J ] . ACM Transactions on Web , 2007 , 1 ( 1 ).
LLINÁS G A G , NAGI R . Network and QoS-based selection of complementary services [J ] . IEEE Transactions on Services Computing , 2015 , 8 ( 1 ): 79 - 91 .
WU Q , ZHU Q . Transactional and QoS-aware dynamic service composition based on ant colony optimization [J ] . Future Generation Computer Systems , 2013 , 29 ( 5 ): 1112 - 1119 .
MABROUK N B , BEAUCHE S , KUZNETSOVA E , et al . QoS-aware service composition in dynamic service oriented environments [C ] // 10th ACM/IFIP/USENIX International Conference on Middleware,November 30-December 4,2009,Urbanna,Illinois . New York:ACM Press , 2009 : 123 - 142 .
HWANG S Y , HSU C C , LEE C H . Service selection for Web services with probabilistic QoS [J ] . IEEE Transactions on Services Computing , 2015 , 8 ( 3 ): 467 - 480 .
CHEN Y , HUANG J , LIN C , et al . A partial selection methodology for efficient QoS-aware service composition [J ] . IEEE Transactions on Services Computing , 2015 , 8 ( 3 ): 384 - 397 .
AL-HELAL H , GAMBLE R . Introducing replaceability into Web service composition [J ] . IEEE Transactions on Services Computing , 2014 , 7 ( 2 ): 198 - 209 .
TRUMMER I , FALTING S B , BINDER W . Multi-objective quality-driven service selection—a fully polynomial time approximation scheme [J ] . IEEE Transactions on Software Engineering , 2014 , 40 ( 2 ): 167 - 191 .
JIN X , CHUN S , JUNG J , et al . IoT service selection based on physical service model and absolute dominance relationship [C ] // 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications,Nov 17-19,2014,Matsue,Japan . New Jersey:IEEE Press , 2014 : 65 - 72 .
ARDAGNA D , PERNICI B . Adaptive service composition in flexible processes [J ] . IEEE Transactions on Software Engineering , 2007 , 33 ( 6 ): 369 - 384 .
XIANG F , HU Y , YU Y , et al . QoS and energy consumption aware service composition and optimal-selection based on Paretogroup leader algorithm in cloud manufacturing system [J ] . Central European Journal of Operations Research , 2014 , 22 ( 4 ): 663 - 685 .
TAO F , LAILI Y , XU L , et al . FC-PACO-RM:a parallel method for service composition optimal-selection in cloud manufacturing system [J ] . IEEE Transactions on Industrial Informatics , 2013 , 9 ( 4 ): 2023 - 2033 .
TAO F , ZHAO D , HU Y , et al . Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system [J ] . IEEE Transactions on Industrial Informatics , 2008 , 4 ( 4 ): 315 - 327 .
KAMANKESH H , AGELIDIS V G , KAVOUSI-FARD A . Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand [J ] . Energy , 2016 ( 100 ): 285 - 297 .
MIRJALILI S . Moth-flame optimization algorithm:a novel nature-inspired heuristic paradigm [J ] . Knowledge-Based Systems , 2015 ( 89 ): 228 - 249 .
0
浏览量
589
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构