浏览全部资源
扫码关注微信
[ "夏景明(1980-),男,博士,南京信息工程大学电子与信息工程学院副教授,主要研究方向为信号处理。" ]
[ "唐玲玲(1992-),女,南京信息工程大学电子与信息工程学院硕士生,主要研究方向为智能仪器。" ]
[ "谈玲(1979-),女,博士,南京信息工程大学计算机与软件学院副教授,主要研究方向为物联网大数据及气候变化。" ]
[ "郑晗(1994-),男,南京信息工程大学计算机与软件学院硕士生,主要研究方向为物联网。" ]
网络出版日期:2017-10,
纸质出版日期:2017-10-20
移动端阅览
夏景明, 唐玲玲, 谈玲, 等. 基于K-means和MTLS-SVM算法的生理参数监测系统[J]. 电信科学, 2017,33(10):43-49.
Jingming XIA, Lingling TANG, Ling TAN, et al. Biometric monitoring system based on K-means &MTLS-SVM algorithm[J]. Telecommunications science, 2017, 33(10): 43-49.
夏景明, 唐玲玲, 谈玲, 等. 基于K-means和MTLS-SVM算法的生理参数监测系统[J]. 电信科学, 2017,33(10):43-49. DOI: 10.11959/j.issn.1000-0801.2017286.
Jingming XIA, Lingling TANG, Ling TAN, et al. Biometric monitoring system based on K-means &MTLS-SVM algorithm[J]. Telecommunications science, 2017, 33(10): 43-49. DOI: 10.11959/j.issn.1000-0801.2017286.
在非医模式的生理参数监测系统中,对监测参数进行学习,可以提高诊断和预测精度。针对多任务时间序列中存在的信息挖掘不充分、预测精度低等问题,将机器学习中的监督和半监督学习方式结合起来对远程健康监护对象进行生理状况预测。该方法用 K-means 算法将相同类别的数据集群,并使用多任务最小二乘支持向量机(MTLS-SVM)来训练历史数据来进行趋势预测。为了评估该方法的有效性,将MTLS-SVM方法与K-means、MTLS-SVM方法比较,实验结果表明该方法具有较高的预测精度。
In a nonmedical biometric monitoring system
the monitoring parameters are preceded with machine learning for precision promotion of diagnosis and prediction.Considering the problems of insufficient information mining and low prediction accuracy in multi task time series
both supervised and unsupervised machine learning techniques were applied to predict the physical condition of the remote health care.These techniques were K-means for clustering the similar group of data and MTLS-SVM model for training and testing historical data to perform a trend prediction.In order to evaluate the effectiveness of the method
the proposed method was compared with MTLS-SVM method.The experimental results show that the proposed method has higher prediction accuracy.
褚航 , 曾碧 . 非接触式心跳监控系统——面向社区医疗服务的物联网应用系统研究与开发 [J ] . 计算机系统应用 , 2012 , 21 ( 8 ): 233 - 235 .
CHU H , ZENG B . Non contact heartbeat monitoring system—research and development of internet of things application system for community medical service [J ] . Computer System &Applications , 2012 , 21 ( 8 ): 233 - 235 .
谈玲 , 张琭 . 交互式多生物特征识别技术在电子商务中的应用 [J ] . 电信科学 , 2015 , 31 ( 10 ): 124 - 129 .
TAN L , ZHANG L . Application of interactive multi-biometrics recognition on E-commerce [J ] . Telecommunications Science , 2015 , 31 ( 10 ): 124 - 129 .
PALANIAPPAN S , AWANG R . Intelligent heart disease prediction system using data mining techniques [C ] // International Conference on Computer Systems & Applications,March 30-April 3,2008,Doha,Qatar . New Jersey:IEEE Press , 2008 : 108 - 115 .
TSIPOURAS M G , EXARCHOS T P , FOTIADIS D I , et al . Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling [J ] . IEEE Transactions on Information Technology in Biomedicine , 2008 , 12 ( 4 ): 447 - 458 .
PATIL S B , KUMARASWAMY Y S . Intelligent and effective heart attack prediction system using data mining and artificial neural network [J ] . European Journal of Scientific Research , 2009 , 31 ( 4 ): 642 - 656 .
SRINIVAS K , KAVITHA R B K , GOVRDHAN A . Applications of data mining techniques in healthcare and prediction of heart attacks [J ] . International Journal on Computer Science and Engineering , 2010 , 2 ( 2 ): 250 - 255 .
RESUL D , TURKOGLU I , SENGUR A . Effective diagnosis of heart disease through neural networks ensembles [J ] . International Journal of Expert Systems with Applications , 2009 ( 36 ): 7675 - 7680 .
VAPNIK V . The nature of statistical learning theory [M ] . New York : SpringerPress , 1995 .
SAPANKEVYCH N I , SANKAR R . Time series prediction using support vector machines:a survey [J ] . IEEE Computational Intelligence Magazine , 2009 , 4 ( 2 ): 24 - 38 .
KAYTEZ F , TAPLAMACIOGLU M C , CAM E , et al . Forecasting electricity consumption:a comparison of regression analysis,neural networks and least squares support vector machines [J ] . International Journal of Electrical Power & Energy Systems , 2015 ( 67 ): 431 - 438 .
VAN G T , SUYKENS J K , BAESTAENS D E , et al . Financial time series prediction using least squares support vector machines within the evidence framework [J ] . IEEE Transactions on Neural Networks , 2001 , 12 ( 4 ): 809 - 821 .
YE M Y , WANG X D . Chaotic time series prediction using least squares support vector machines [J ] . Chinese Physics , 2004 , 13 ( 4 ):454.
CARUANA R . Multitask learning [M ] . New York : SpringerPress , 1998 : 95 - 133 .
HAN J W , KAMBER M . Data mining:concepts and techniques:2nd edition [J ] . San Francisco:Morgan Kaufman Publishers , 2006 .
0
浏览量
648
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构