浏览全部资源
扫码关注微信
[ "李昊奇(1992-),男,杭州电子科技大学硕士生,主要研究方向为深度学习与数据挖掘。" ]
[ "应娜(1978−),女,博士,杭州电子科技大学副教授、硕士生导师,主要研究方向为信号处理与人工智能。" ]
[ "郭春生(1971−),男,博士,杭州电子科技大学副教授、硕士生导师,主要研究方向为模式识别与人工智能。" ]
[ "王金华(1992-),女,杭州电子科技大学硕士生,主要研究方向为深度学习与自然语言处理。" ]
网络出版日期:2018-01,
纸质出版日期:2018-01-20
移动端阅览
李昊奇, 应娜, 郭春生, 等. 基于深度信念网络和线性单分类SVM的高维异常检测[J]. 电信科学, 2018,34(1):34-42.
Haoqi LI, Na YING, Chunsheng GUO, et al. High-dimensional outlier detection based on deep belief network and linear one-class SVM[J]. Telecommunications science, 2018, 34(1): 34-42.
李昊奇, 应娜, 郭春生, 等. 基于深度信念网络和线性单分类SVM的高维异常检测[J]. 电信科学, 2018,34(1):34-42. DOI: 10.11959/j.issn.1000-0801.2018006.
Haoqi LI, Na YING, Chunsheng GUO, et al. High-dimensional outlier detection based on deep belief network and linear one-class SVM[J]. Telecommunications science, 2018, 34(1): 34-42. DOI: 10.11959/j.issn.1000-0801.2018006.
针对目前高维数据异常检测存在的困难,提出一种基于深度信念网络和线性单分类支持向量机的高维异常检测算法。该算法首先利用深度信念网络具有良好的特征提取功能,实现高维数据的降维,然后基于线性核函数的单分类支持向量机实现异常检测。选取UCI机器学习库中的高维数据集进行实验,结果表明,该算法在检测正确率和计算复杂度上均有明显优势。与PCA-SVDD算法相比,检测正确率有4.65%的提升。与自动编码器算法相比,其训练和测试时间均有显著下降。
Aiming at the difficulties in high-dimensional outlier detection at present
an algorithm of high-dimensional outlier detection based on deep belief network and linear one-class SVM was proposed.The algorithm firstly used the deep belief network which had a good performance in the feature extraction to realize the dimensionality reduction of high-dimensional data
and then the outlier detection was achieved based on a one-class SVM with the linear kernel function.High-dimensional data sets in UCI machine learning repository were selected to experiment
result shows that the algorithm has obvious advantages in detection accuracy and computational complexity.Compared with the PCA-SVDD algorithm
the detection accuracy is improved by 4.65%.Compared with the automatic encoder algorithm
its training time and testing time decrease significantly.
王忠伟 , 陈叶芳 , 肖四友 , 等 . 一种高维大数据全k近邻查询算法 [J ] . 电信科学 , 2015 , 31 ( 7 ): 52 - 62 .
WANG Z W , CHEN Y F , XIAO S Y , et al . An AkNN algorithm for high-dimensional big data [J ] . Telecommunications Science , 2015 , 31 ( 7 ): 52 - 62 .
CHANDOLA V , BANERJEE A , KUMAR V . Anomaly detection:A survey [J ] . ACM Computing Surveys , 2009 , 41 ( 3 ): 1 - 58 .
SHIN H J , EOM D H , KIM S S . One-class support vector machines—an application in machine fault detection and classification [J ] . Computers & Industrial Engineering , 2005 , 48 ( 2 ): 395 - 408 .
李昕 , 钱旭 , 王自强 . 一种高效的高维异常数据挖掘算法 [J ] . 计算机工程 , 2010 , 36 ( 21 ): 34 - 36 .
LI X , QIAN X , WANG Z Q . Efficient data mining algorithm for high-dimensional outlier data [J ] . Computer Engineering , 2010 , 36 ( 21 ): 34 - 36 .
TENENBAUM J B , DE S V , LANGFORD J C . A global geometric framework for nonlinear dimensionality reduction [J ] . Science , 2000 , 290 ( 5500 ): 2319 .
POMERANTSEV A L . Principal component analysis(PCA) [M ] . New York : John Wiley & Sons,Inc. , 2014 : 4229 - 4233 .
ROWEIS S T , SAUL L K . Nonlinear dimensionality reduction by locally linear embedding [J ] . Science , 2000 , 290 ( 5500 ): 2323 .
GONZALEZ I,DÉJEAN S , MARTIN P G P , et al . CCA:an R package to extend canonical correlation analysis [J ] . Journal of Statistical Software , 2008 , 23 ( 12 ).
CHENOURI S , LIANG J , SMALL C G . Robust dimension reduction [J ] . Wiley Interdisciplinary Reviews Computational Statistics , 2015 , 7 ( 1 ): 63 - 69 .
程辉 , 方景龙 , 王大全 , 等 . 超平面支持向量机简化性能分析 [J ] . 电信科学 , 2015 , 31 ( 8 ): 78 - 83 .
CHENG H , FANG J L , WANG D Q , et al . Performance analysis of simplification of hyperplane support vector machine [J ] . Telecommunications Science , 2015 , 31 ( 8 ): 78 - 83 .
GEORGE A . Anomaly detection based on machine learning dimensionality reduction using PCA and classification using SVM [J ] . International Journal of Computer Applications , 2012 , 47 ( 21 ): 5 - 8 .
BAO S , ZHANG L , YANG G . Trajectory outlier detection method based on kernel principal component analysis [J ] . Journal of Computer Applications , 2014 , 34 ( 7 ): 2107 - 2110 .
SAKURADA M , YAIRI T . Anomaly detection using autoencoders with nonlinear dimensionality reduction [C ] // Mlsda Workshop on Machine Learning for Sensory Data Analysis,December 2,2014,Gold Coast,Australia QLD,Australia . New York:ACM Press , 2014 : 4 - 11 .
HINTON G E . Training products of experts by minimizing contrastive divergence [J ] . Neural Computation , 2002 , 14 ( 8 ): 1771 - 1800 .
SUBRAMANIAM S , PALPANAS T , PAPADOPOULOS D , et al . Online outlier detection in sensor data using non-parametric models [C ] // International Conference on Very Large Data Bases,September 12-15,2006,Seoul,Korea . New York:ACM Press , 2006 : 187 - 198 .
MOORE B . Principal component analysis in linear systems:controllability,observability,and model reduction [J ] . IEEE Transactions on Automatic Control , 2003 , 26 ( 1 ): 17 - 32 .
HU C , HOU X , LU Y . Improving the architecture of an autoencoder for dimension reduction [C ] // Ubiquitous Intelligence and Computing,2014 IEEE,Intl Conf on and IEEE,Intl Conf on and Autonomic and Trusted Computing,and IEEE,Intl Conf on Scalable Computing and Communications and ITS Associated Workshops,Dec 9-12,2014,Bali,Indonesia . Piscataway:IEEE Press , 2014 : 855 - 858 .
HINTON G E . A practical guide to training restricted Boltzmann machines [M ] . Berlin : Springer Berlin Heidelberg , 2012 : 599 - 619 .
YANG J , DENG T , SUI R . An adaptive weighted one-class svm for robust outlier detection [M ] . Berlin : Springer Berlin Heidelberg , 2016 .
LIN C J . A practical guide to support vector classification [EB/OL ] . (2003-01-31)[2017-06-21].http://www.researchgate.net/publication/200085999_A_Practical_Guide_to_Support_Vector_Classication (2003-01-31)[2017-06-21].http://www.researchgate.net/publication/200085999_A_Practical_Guide_to_Support_Vector_Classication .
0
浏览量
1086
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构