浏览全部资源
扫码关注微信
[ "赵宇翔(1993−),男,西安邮电大学陕西省信息通信网络及安全重点实验室硕士生,主要研究方向为数据挖掘。" ]
[ "卢光跃(1971−),男,博士,西安邮电大学陕西省信息通信网络及安全重点实验室教授,主要研究方向为信号与信息处理、认知无线电和大数据分析。" ]
[ "王航龙(1989−),男,西安邮电大学陕西省信息通信网络及安全重点实验室硕士生,主要研究方向为数据挖掘。" ]
[ "李四维(1989−),男,西安邮电大学陕西省信息通信网络及安全重点实验室硕士生,主要研究方向为数据挖掘。" ]
网络出版日期:2018-01,
纸质出版日期:2018-01-20
移动端阅览
赵宇翔, 卢光跃, 王航龙, 等. 基于缺失数据BN参数学习的电信流失客户预测算法[J]. 电信科学, 2018,34(1):52-60.
Yuxiang ZHAO, Guangyue LU, Hanglong WANG, et al. A prediction algorithm of telecom customer churn based on Bayesian network parameters learning under incomplete data[J]. Telecommunications science, 2018, 34(1): 52-60.
赵宇翔, 卢光跃, 王航龙, 等. 基于缺失数据BN参数学习的电信流失客户预测算法[J]. 电信科学, 2018,34(1):52-60. DOI: 10.11959/j.issn.1000-0801.2018018.
Yuxiang ZHAO, Guangyue LU, Hanglong WANG, et al. A prediction algorithm of telecom customer churn based on Bayesian network parameters learning under incomplete data[J]. Telecommunications science, 2018, 34(1): 52-60. DOI: 10.11959/j.issn.1000-0801.2018018.
针对电信客户流失预测问题,在数据缺失情况下,基于贝叶斯网络(Bayesian network,BN),用最近邻算法填补缺失数据,并将两类定性约束融入贝叶斯网络参数学习过程,用以提高流失客户预测精度。仿真及实际数据分析结果表明,所提算法较经典的期望最大化(expectation maximization,EM)算法有明显优势,在牺牲代价较小的忠诚客户预测精度的情况下,得到了更高的流失客户预测精度。
Aiming at prediction of telecom customer churn
a novel method was proposed to increase the prediction accuracy with the missing data based on the Bayesian network.This method used k-nearest neighbor algorithm to fill the missing data and adds two types of monotonic influence constraints into the process of learning Bayesian network parameter.Simulations and actual data analysis demonstrate that the proposed algorithm obtains higher prediction accuracy of churn customers with the loss of less cost prediction accuracy of loyal customers
outperforms the classic expectation maximization algorithm.
JAMIL S , KHAN A . Churn comprehension analysis for telecommunication industry using ALBA [C ] // International Conference on Emerging Technologies(ICET 2016),Oct 1,2016,Islamabad,Pakistan . Piscataway:IEEE Press , 2016 .
PEARL J . Probabilistic reasoning in intelligent systems:networks of plausible inference [J ] . Computer Science Artificial Intelligence , 1988 , 70 ( 2 ): 1022 - 1027 .
WAGNER S . A Bayesian network approach to assess and predict software quality using activity-based quality models [J ] . Information and Software Technology , 2016 , 52 ( 11 ): 1230 - 1241 .
PENDHARKAR P C , KHOSROWPOUR M , RODGER J A . Application of Bayesian network classifiers and data envelopment analysis for mining breast cancer patterns [J ] . Journal of Computer Information Systems , 2016 , 40 ( 4 ): 127 - 131 .
COOK J , LEWANDOWSKY S . Rational irrationality:modeling climate change belief polarization using Bayesian networks [J ] . Topics in Cognitive Science , 2016 , 8 ( 1 ): 160 - 179 .
LAURITZEN S L . The EM algorithm for graphical association models with missing data [J ] . Computational Statistics & Data Analysis , 1995 , 19 ( 2 ): 191 - 201 .
LIAO W , JI Q . Learning Bayesian network parameters under incomplete data with domain knowledge [J ] . Pattern Recognition , 2009 , 42 ( 11 ): 3046 - 3056 .
MASEGOSA A R , FEELDERS A J , GAAG L C V D . Learning from incomplete data in Bayesian networks with qualitative influences [J ] . International Journal of Approximate Reasoning , 2015 , 69 ( C ): 18 - 34 .
CORANI G , CAMPOS C P D . A maximum entropy approach to learn Bayesian networks from incomplete data [M ] // Interdisciplinary Bayesian Statistics . Berlin : Springer International Publishing , 2015 : 69 - 82 .
张连文 . 贝叶斯网引论 [M ] . 北京 : 科学出版社 , 2006 .
Zhang L W . Introduction of Bayesian network [M ] . Beijing : Science Press , 2006 .
ZHOU Y , FENTON N , ZHU C . An empirical study of Bayesian network parameter learning with monotonic influence constraints [J ] . Decision Support Systems , 2016 , 87 ( C ): 69 - 79 .
FEELDERS A , VAN D G L C . Learning Bayesian network parameters under order constraints [J ] . International Journal of Approximate Reasoning , 2005 , 42 ( 1-2 ): 37 - 53 .
刘星毅 . 基于马氏距离和灰色分析的缺失值填充算法 [J ] . 计算机应用 , 2009 , 29 ( 9 ): 2502 - 2504 .
LIU X Y . Improved kNN algorithm based on Mahalanobis distance and gray analysis [J ] . Journal of Computer Applications , 2009 , 29 ( 9 ): 2502 - 2504 .
杨宇 , 高晓光 , 郭志高 . 小数据集条件下基于数据再利用的BN参数学习 [J ] . 自动化学报 , 2015 , 41 ( 12 ): 2058 - 2071 .
YANG Y , GAO X G , GUO Z G . Learning BN parameters with small data sets based reutilization [J ] . Acta Automatica Sinica , 2015 , 41 ( 12 ): 2058 - 2071 .
KULLBACK S , LEIBLER R A . On Information and Sufficiency [J ] . Annals of Mathematical Statistics , 1951 , 22 ( 22 ): 79 - 86 .
HU X J , YANG S L , MA X J . Inference structure and construction algorithms of Bayesian network based on junction tree [J ] . Acta Simulata Systematica Sinica , 2004 , 16 ( 11 ): 2559 - 2558 .
0
浏览量
709
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构