浏览全部资源
扫码关注微信
1. 浙江科技学院大数据科学系,浙江 杭州310023
2. 浙江水利水电学院,浙江 杭州310018
[ "钱亚冠(1976–),男,博士,浙江科技学院理学院大数据科学系副教授,主要研究方向为互联网流量分类、机器学习与大数据处理、对抗性机器学习。" ]
[ "关晓惠(1977–),女,浙江水利水电学院副教授,主要研究方向为机器学习与大数据处理、对抗性机器学习。" ]
[ "吴淑慧(1975–),女,博士,浙江科技学院理学院大数据科学系讲师,主要研究方向为量子计算与机器学习。" ]
[ "云本胜(1980–),男,博士,浙江科技学院理学院大数据科学系讲师,主要研究方向为数据挖掘、服务计算。" ]
[ "任东晓(1982–),女,博士,浙江科技学院理学院大数据科学系高级工程师,主要研究方向为机器学习与大数据处理、对抗性机器学习。" ]
网络出版日期:2018-04,
纸质出版日期:2018-04-20
移动端阅览
钱亚冠, 关晓惠, 吴淑慧, 等. 一种基于特征集构建的Bagging集成方法及其在流量分类中的应用[J]. 电信科学, 2018,34(4):41-48.
Yaguan QIAN, Xiaohui GUAN, Shuhui WU, et al. An approach of Bagging ensemble based on feature set and application for traffic classification[J]. Telecommunications science, 2018, 34(4): 41-48.
钱亚冠, 关晓惠, 吴淑慧, 等. 一种基于特征集构建的Bagging集成方法及其在流量分类中的应用[J]. 电信科学, 2018,34(4):41-48. DOI: 10.11959/j.issn.1000-0801.2018094.
Yaguan QIAN, Xiaohui GUAN, Shuhui WU, et al. An approach of Bagging ensemble based on feature set and application for traffic classification[J]. Telecommunications science, 2018, 34(4): 41-48. DOI: 10.11959/j.issn.1000-0801.2018094.
Bagging是一种经典的分类器集成方法,其有效性依赖于基分类器之间的差异度。通过遗传算法为每个基分类器构建独立的特征集,目的是获得基分类器之间更好的差异性。同时,根据不同基分类器的分类性能进行优化加权集成,获得更好的泛化能力。最后,采用Softmax回归作为基分类器,将改进的Bagging集成方法应用到互联网流量分类,实验结果表明,改进方法相比经典 Bagging 方法在分类准确率上有显著提高,与利用决策树集成的随机森林相比也有较好的性能提升。
Bagging is a classic ensemble approach
whose effectiveness depends on the diversity of component base classifiers.In order to gain the largest diversity
employing genetic algorithms to get independent feature subset for each base classifier was proposed.Meanwhile
for better generalization
the optimal weights for the base classifiers according to their predictive performance were selected.Finally
refined Bagging ensemble based on simple Softmax regression was applied successfully in traffic classification.The experiment result shows that the proposed approach can get more improvement than the original Bagging ensemble in classification performance
and is better than the random-forests to a certain extent.
ZHOU Z H . Ensemble methods:foundations and algorithms [M ] . Boca Raton : CRC PressPress , 2012 .
LI H , WANG X , DING S . Research and development of neural network ensembles:a survey [J ] . Artificial Intelligence Review , 2017 : 1 - 25 .
AMOZEGAR M , KHORASANI K . An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines [J ] . Neural Networks , 2016 ( 76 ): 106 - 121 .
INOUE H . Fast and accurate inference with adaptive ensemble prediction in image classification with deep neural networks [J ] . arXiv preprint arXiv:1702.08259 , 2017 .
WANG Q , LUO Z H , HUANG J C , et al . A novel ensemble method for imbalanced data learning:bagging of extrapolation-SMOTE SVM [J ] . Computational Intelligence and Neuroscience , 2017 ( 3 ):1827016.
高文 , 钱亚冠 , 吴春明 , 等 . 网络流量特征选择方法中的分治投票策略研究 [J ] . 电子学报 , 2015 , 43 ( 4 ): 795 - 799 .
GAO W , QIAN Y G , WU C M , et al . The divide-conquer and voting strategy for traffic feature selection [J ] . Acta Electronica Sinica , 2015 , 43 ( 4 ): 795 - 799 .
钱亚冠 , 张旻 . 基于过抽样技术的 P2P 流量识别方法 [J ] . 电信科学 , 2014 , 30 ( 4 ): 109 - 113 .
QIAN Y G , ZHANG M . P2P traffic identification based over-sampling technique [J ] . Telecommunications Science , 2014 , 30 ( 4 ): 109 - 113 .
KEARNS M . Learning Boolean formulae or finite automata is as hard as factoring [R ] . Technical Report TR-14-88 Harvard University Aiken Computation Laboratory , 1988 .
KEARNS M , VALIANT L . Cryptographic limitations on learning Boolean formulae and finite automata [J ] . Journal of the ACM (JACM) , 1994 , 41 ( 1 ): 67 - 95 .
EFRON B , TIBSHIRANI R . An introduction to the bootstrap [M ] . New York : Chapman & HallPress , 1993 .
TONGAONKAR A , TORRES R , ILIOFOTOU M , et al . Towards self-adaptive network traffic classification [J ] . Computer Communications , 2015 ( 56 ): 35 - 46 .
SOYSALA M , SCHMIDT E G . Machine learning algorithms for accurate flow-based network traffic classification:evaluation and comparison [J ] . Performance Evaluation , 2010 , 67 ( 6 ): 451 - 467 .
SINGH H , . Performance analysis of unsupervised machine learning techniques for network traffic classification [C ] // 2015 Fifth International Conference on Advanced Computing&Communication Technologies (ACCT),May 15-16,2015,Haryana,India . Piscataway:IEEE Press , 2015 : 401 - 404 .
MOORE A W . Dataset [EB ] . 2017
0
浏览量
649
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构