浏览全部资源
扫码关注微信
[ "汪少敏(1983-),女,中国电信股份有限公司上海研究院高级工程师,主要研究方向为人工智能技术、自然语言处理、大数据和数据挖掘分析。" ]
[ "杨迪(1982-),男,中国电信股份有限公司上海研究院高级工程师,主要研究方向为人工智能技术、智能交互。" ]
[ "任华(1977-),女,中国电信股份有限公司上海研究院高级工程师,主要研究方向人工智能技术、智能客服。" ]
网络出版日期:2018-12,
纸质出版日期:2018-12-20
移动端阅览
汪少敏, 杨迪, 任华. 基于深度学习的文本分类系统关键技术研究与模型验证[J]. 电信科学, 2018,34(12):117-124.
Shaomin WANG, Di YANG, Hua REN. Key technology research and model validation of text classification system based on deep learning[J]. Telecommunications science, 2018, 34(12): 117-124.
汪少敏, 杨迪, 任华. 基于深度学习的文本分类系统关键技术研究与模型验证[J]. 电信科学, 2018,34(12):117-124. DOI: 10.11959/j.issn.1000-0801.2018301.
Shaomin WANG, Di YANG, Hua REN. Key technology research and model validation of text classification system based on deep learning[J]. Telecommunications science, 2018, 34(12): 117-124. DOI: 10.11959/j.issn.1000-0801.2018301.
大数据时代,文本分类是文本数据挖掘和文本价值探索领域的重要工作。传统的文本分类系统存在特征提取能力弱、分类准确率不高的问题。相对于传统的文本分类技术,深度学习技术具有准确率高、特征提取有效等诸多优势,有必要将深度学习技术引入文本分类系统,以解决传统文本分类系统存在的问题。在分析传统文本分类系统的基础上,提出了基于深度学习的文本分类系统的体系架构和关键技术,同时对传统分类模型、TextCNN、CNN+LSTM多种分类模型进行了验证比对。
Text classification is very important to text data mining and value exploration.The traditional text classification system has problems of weak feature extraction ability and low classification accuracy.Compared with the traditional text classification technology
deep learning technology has many advantages such as high accuracy and effective feature extraction.Therefore
it is necessary to apply deep learning technology to the text classification system to solve the problems of the traditional text classification system.The traditional text classification system was analyzed
and the architecture and key technologies of text classification system based on deep learning were proposed.Finally
several classification models were verified and compared
including the traditional classification model
TextCNN and CNN+LSTM.
蔡自兴 , 刘丽珏 , 蔡竟峰 , 等 . 人工智能及其应用(第5版) [M ] . 北京 : 清华大学出版社 , 2016 .
CAI Z X , LIU L J , CAI J F , et al . Artificial intelligence and its application (fifth edition) [M ] . Beijing : Tsinghua University PressPress , 2016 .
ANOTONELLIS I , BOURAS C , POULOPOULOS V . Personalized news categorization through scalable text classification [C ] // Frontiers of WWW Research and Development-APWEB,Lecture Notes in Computer Science,January 16-18,2006,Harbin,China . New York:ACM Press , 2006 : 391 - 401 .
HU M , LIU B . Mining and summarizing customer review [C ] // ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 22-25,2004,Seattle,WA,USA . New York:ACM Press , 2004 : 168 - 177 .
蔡鑫 , 娄京生 . 基于LSTM深度学习模型的中国电信官方微博用户情绪分析 [J ] . 电信科学 , 2017 , 33 ( 12 ): 136 - 141 .
CAI X , LOU J S . Sentiment analysis of telecom official micro-blog users based on LSTM deep learning model [J ] . Telecommunications Science , 2017 , 33 ( 12 ): 136 - 141 .
JOULIN A , GRAVE E , BOJANOWSKI P , et al . Bag of tricks for efficient text classification [J ] . arXiv:1607.01759v3[cs.CL] , 2016 .
余凯 , 贾磊 , 陈雨强 , 等 . 深度学习的昨天、今天和明天 [J ] . 计算机研究与发展 , 2013 ( 9 ): 1799 - 1804 .
YU K , JIA L , CHEN Y Q , et al . Deep learning:yesterday,today and tomorrow [J ] . Journal of Computer Research and Development , 2013 ( 9 ): 1799 - 1804 .
崔建明 , 刘建明 , 廖周宇 . 基于 SVM 算法的文本分类技术研究 [J ] . 计算机仿真 , 2013 ( 2 ): 299 - 302 .
CUI J M , LIU J M , LIAO Z Y . Research of text categorization based on support vector machine [J ] . Computer Simulation , 2013 ( 2 ): 299 - 302 .
TKACHENKO M , SIMANOVSKY A . Named entity recognition:Exploring features [Z ] . 2012 .
ZHENG X Q , CHEN H Y , XU T Y , et al . Deep learning for Chinese word segmentation and POS tagging [C ] // Empirical Methods in Natural Language Processing,Oct 18-21,2013,Seattle,Washington,USA.[S.l.:s.n] . 2013 : 647 - 657 .
LECUN Y , BENGIO Y , HINTON G . Deep learning [J ] . Nature , 2015 , 521 ( 7553 ): 436 - 444 .
0
浏览量
826
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构