浏览全部资源
扫码关注微信
1. 国网信息通信产业集团有限公司,北京 100085
2. 国家电网有限公司,北京 100032
[ "刘建(1989- ),男,国网信息通信产业集团有限公司工程师,主要研究方向为电力营销大数据分析。" ]
[ "赵加奎(1979- ),男,博士,国网信息通信产业集团有限公司教授级高级工程师,主要研究方向为电力信息化及电力大数据分析。" ]
[ "陈雨泽(1988- ),男,国网信息通信产业集团有限公司工程师,主要研究方向为电力营销大数据分析。" ]
[ "方学民(1972- ),男,国家电网有限公司高级工程师,主要研究方向为电力信息化及电力大数据分析。" ]
[ "刘玉玺(1984- ),男,国网信息通信产业集团有限公司高级工程师,主要研究方向为电力信息化及电力大数据分析。" ]
[ "王树龙(1978- ),男,国网信息通信产业集团有限公司工程师,主要研究方向为电力营销信息化及大数据分析。" ]
[ "陈雁(1981- ),女,博士,国网信息通信产业集团有限公司高级工程师,主要研究方向为电力营销大数据分析、人工智能技术研究与应用。" ]
[ "欧阳红(1967- ),男,国网信息通信产业集团有限公司高级工程师,主要研究方向为电力信息化及电力大数据分析。" ]
网络出版日期:2019-03,
纸质出版日期:2019-03-20
移动端阅览
刘建, 赵加奎, 陈雨泽, 等. 考虑春节影响的售电量预测结果修正方法[J]. 电信科学, 2019,35(3):127-134.
Jian LIU, Jiakui ZHAO, Yuze CHEN, et al. An adjustment method for electricity sales forecasting result considering the effects of spring festival[J]. Telecommunications science, 2019, 35(3): 127-134.
刘建, 赵加奎, 陈雨泽, 等. 考虑春节影响的售电量预测结果修正方法[J]. 电信科学, 2019,35(3):127-134. DOI: 10.11959/j.issn.1000-0801.2019041.
Jian LIU, Jiakui ZHAO, Yuze CHEN, et al. An adjustment method for electricity sales forecasting result considering the effects of spring festival[J]. Telecommunications science, 2019, 35(3): 127-134. DOI: 10.11959/j.issn.1000-0801.2019041.
考虑春节对不同行业的影响,提出了一种考虑春节因素影响的月度售电量预测结果修正方法,首先利用历史春节日期距1—3月第一天的天数和历史各行业1—3月的售电量占第一季度售电量的占季比进行曲线拟合,然后利用预测年份春节日期距1—3月第一天的天数和拟合函数计算预测年份1—3月售电量占季比的预测值,最后利用各月占季比预测值对国家电网公司1—3月的售电量预测结果进行修正,得到春节因素修正后的售电量预测结果。实证研究结果表明,本文提出的售电量预测结果修正方法能够有效地降低第一季度售电量预测误差。
The effects of Spring Festival on electricity sales of different trades were considered and an adjustment method for electricity sales forecasting result was proposed.Firstly
the month-quarter ratio of historical electricity sales in each trade of every month in the first quarter and the distance between Spring Festival and the first day of every month in the first quarter was used to create a functional relationship.Then
the distance between Spring Festival and the first day of every month in the first quarter of the target year was used as input and the predicted month-quarter ratio of electricity sales of each trade of every month in the first quarter of the target year was calculated according to the functional relationship.The adjusted electricity sales forecasting result can then be computed by using the predicted month-quarter ratio and the electricity sales forecasting of each trade of every month in the first quarter of the target year before adjustment.The adjustment result shows that the proposed method can effectively lower the error of electricity sales forecasting in the first quarter.
崔和瑞 , 王娣 . 基于季节 ARIMA 模型的华北电网售电量预测研究 [J ] . 华东电力 , 2009 , 37 ( 1 ): 70 - 72 .
CUI H R , WANG D . Study of electricity sales forecasting for North China Power Grid based on seasonal ARIMA model [J ] . East China Electric Power , 2009 , 37 ( 1 ): 70 - 72 .
吴杰 , 宋国堂 , 卢志刚 , 等 . 基于偏最小二乘回归与比重法的月售电量预测 [J ] . 电力系统及其自动化学报 , 2008 , 20 ( 3 ): 66 - 69 .
WU J , SONG G T , LU Z G , et al . Forecasting for monthly elec-tricity consumption using partial least-square regressive and proportion model [J ] . Proceedings of the CSU-EPSA , 2008 , 20 ( 3 ): 66 - 69 .
樊娇 , 冯昊 , 牛东晓 , 等 . 基于小波分析和GM-ARIMA模型的月度售电量预测 [J ] . 华北电力大学学报(自然科学版) , 2015 , 42 ( 4 ): 101 - 105 .
FAN J , FENG H , NIU D X , et al . Monthly electricity sales forecast based on wavelet analysis and GM-ARIMA model [J ] . Journal of North China Electric Power University , 2015 , 42 ( 4 ): 101 - 105 .
颜伟 , 程超 , 薛斌 , 等 . 结合X12乘法模型和ARIMA模型的月售电量预测方法 [J ] . 电力系统及其自动化学报 , 2016 , 28 ( 5 ): 74 - 80 .
YAN W , CHENG C , XUE B , et al . Forecasting for monthly electricity consumption using X12 multiplication method and ARIMA model [J ] . Proceedings of the CSU-EPSA , 2016 , 28 ( 5 ): 74 - 80 .
TAYLOR J W . Triple seasonal methods for short-term electricity demand forecasting [J ] . European Journal of Operational Research , 2010 , 204 ( 1 ): 139 - 152 .
OHTSUKA Y , OGA T , KAKAMU K . Forecasting electricity demand in Japan:a Bayesian spatial autoregressive ARMA approach [J ] . Computational Statistics & Data Analysis , 2010 , 54 ( 11 ): 2721 - 2735 .
RINGWOOD J V , BOFELLI D , MURRAY F T . Forecasting electricity demand on short,medium and long time scales using neural networks [J ] . Journal of Intelligent and Robotic Systems , 2001 , 31 ( 1-3 ): 129 - 147 .
HIRANO O , KANKE M , OZAWA K . Electricity demand and price analysis in California using possibility regression model [J ] . Journal of Advanced Computational Intelligence and Intelligent Informatics , 2003 , 7 ( 2 ): 147 - 152 .
MOTAMEDI A , ZAREIPOUR H , ROSEHART W D . Electricity price and demand forecasting in smart grids [J ] . IEEE Transactions on Smart Grid , 2012 , 3 ( 2 ): 664 - 674 .
LIU S , TIAN L . The study of long-term electricity load forecasting based on improved grey prediction model [C ] // 2013 International Conference on Machine Learning and Cybernetics,July 14-17,2013,Tianjin,China . Piscataway:IEEE Press , 2013 : 653 - 656 .
KALASHNIKOV V , KALASHNYKOVA N , PEREZ F J C , et al . Liberalization of Mexican electricity market:various modeling approaches with numerical simulation results [C ] // 2008 International Conference on Intelligent Systems Design and Applications,June 24-28,2008,Kaohsiung,China . Piscataway:IEEE Press , 2008 : 72 - 76 .
ZHAO J , TANG W S , FANG X M . A novel electricity sales forecasting method based on clustering regression and time series analysis [C ] // 2015 International Conference on Artificial Intelligence and Software Engineering,January 10-12,2015,Lisbon,Portugal . New York:ACM Press , 2015 .
ZHAO J , TANG W S , FANG X M , et al . A novel accuracy adjustment approach for forecasted quantity of electricity sales based on abnormal influencing factors assessment [C ] // 2015 8th International Symposium on Computational Intelligence and Design (ISCID),Dec 21-22,2015,Hangzhou,China . Piscataway:IEEE Press , 2015 : 516 - 520 .
孙婧捷 . 基于组合方法的月度售电量预测研究 [D ] . 大连:大连理工大学 , 2014 .
SUN J J . Research on monthly electricity sales forecasting based on combination method [D ] . Dalian:Dalian University of Technology , 2014 .
潘小辉 , 刘丽萍 , 李扬 . 提高月度售电量预测精度的一种新方法 [J ] . 电力需求侧管理 , 2013 ( 3 ): 11 - 15 .
PAN X H , LIU L P , LI Y . A new method to promote the fore-casting accuracy of monthly electricity consumption [J ] . Power Demand Side Management , 2013 ( 3 ): 11 - 15 .
0
浏览量
542
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构