浏览全部资源
扫码关注微信
1. 杭州电子科技大学,浙江 杭州 310018
2. 中国计量大学,浙江 杭州 310018
[ "周冬(1994- ),男,杭州电子科技大学通信工程学院硕士生,主要研究方向为无线通信系统、大规模MIMO系统中的预编码技术。" ]
[ "曹海燕(1975- ),女,博士,杭州电子科技大学通信工程学院副教授,主要研究方向为无线通信系统的信道编码、信号检测和LTE物理层标准等。" ]
[ "许方敏(1980- ),女,杭州电子科技大学通信工程学院讲师,主要研究方向为先进移动通信系统及其关键技术,包括干扰抑制策略和无线资源管理策略。" ]
[ "方昕(1975- ),女,杭州电子科技大学通信工程学院副教授,主要研究方向为4G、5G物理层算法。" ]
[ "王秀敏(1963- ),女,中国计量大学信息工程学院教授,主要研究方向为电路与系统、信号处理。" ]
网络出版日期:2019-03,
纸质出版日期:2019-03-20
移动端阅览
周冬, 曹海燕, 许方敏, 等. 大规模MIMO系统中基于权重高斯赛德低复杂度ZF预编码方案[J]. 电信科学, 2019,35(3):69-75.
Dong ZHOU, Haiyan CAO, Fangmin XU, et al. A low complexity ZF precoding scheme based on weighted Gauss-Seidel in massive MIMO systems[J]. Telecommunications science, 2019, 35(3): 69-75.
周冬, 曹海燕, 许方敏, 等. 大规模MIMO系统中基于权重高斯赛德低复杂度ZF预编码方案[J]. 电信科学, 2019,35(3):69-75. DOI: 10.11959/j.issn.1000-0801.2019048.
Dong ZHOU, Haiyan CAO, Fangmin XU, et al. A low complexity ZF precoding scheme based on weighted Gauss-Seidel in massive MIMO systems[J]. Telecommunications science, 2019, 35(3): 69-75. DOI: 10.11959/j.issn.1000-0801.2019048.
大规模MIMO系统中的传统ZF(zero forcing,迫零)预编码方法中由于存在厄米特矩阵求逆,其复杂度随着用户数的增多呈指数增加。针对这一问题,提出了一种基于权重高斯赛德(weighted Gauss-Seidel, WGS)的低复杂度全数字ZF预编码方案,即在高斯赛德(GS)的基础上,将传统GS算法迭代结果与上一步的迭代结果进行权重相加以加速迭代收敛,其权重因子通过最小均方和来确定,并且证明权重因子可使算法收敛。仿真结果表明,WGS算法通过极少的迭代次数即可逼近ZF 预编码方案的性能,且将ZF预编码的复杂度从O(K
3
)降低到O(K
2
),其中,K 为用户数。
In massive MIMO systems
due to inversion of Hermitian matrix
the complexity of the traditional ZF precoding method increases exponentially with increase of the number of users.To solve this problem
a low complexity digital ZF precoding scheme based on weighted Gauss-Seidel (WGS) was proposed.That was weighted addtion the iteration results of previous step and Gausee-Seidel iteration results to accelerate the iterative convergence.The weighting factor was determined by the least mean square sum
and the weighting factor was proved to make the algorithm converge.The simulation results show that the WGS algorithm can approximate the performance of ZF precoding scheme with very few iterations
and reduce the complexity of ZF precoding from O(K
3
) to O(K
2
)
where K is the number of users.
NGO H Q , LARSSON E G , MARZETTA T L , et al . Energy and spectral efficiency of very large multiuser MIMO systems [J ] . IEEE Transactions on Communications , 2013 , 61 ( 4 ): 1436 - 1449 .
LIU Z , DU W , SUN D , et al . Energy and spectral efficiency tradeoff for massive MIMO systems with transmit antenna selection [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 5 ): 4453 - 4457 .
曹海燕 , 冯瑞瑞 , 方昕 , 等 . 大规模 MIMO 系统中基于能效最大化的资源联合优化算法 [J ] . 电信科学 , 2017 , 33 ( 12 ): 84 - 90 .
CAO H Y , FENG R R , FANG X , et al . A joint optimization algorithm based on energy efficiency maximization for massive MIMO systems [J ] . Telecommunications Science , 2017 , 33 ( 12 ): 84 - 90 .
PRASAD K N R S V , HOSSAIN E , and BHARGAVA V K , et al . Energy efficiency in massive MIMO-based 5G networks:opportunities and challenges [J ] . IEEE Wireless Communications , 2017 , 24 ( 3 ): 86 - 94 .
BOGALE T E , LE L B . Massive MIMO and mmWave for 5G wireless HetNet:potential benefits and challenges [J ] . IEEE Vehicular Technology Magazine , 2016 , 11 ( 1 ): 64 - 75 .
COSTA M H M . Writing on dirty paper (Corresp) [J ] . IEEE Transactions on Information Theory , 1983 , 29 ( 3 ): 439 - 441 .
LU Z , NING J , ZHANG Y , et al . Richardson method based linear precoding with low complexity for massive MIMO systems [C ] // IEEE Vehicular Technology Conference,September 6-9,2015,Boston,USA . Piscataway:IEEE Press , 2015 : 1 - 4 .
SONG W , CHEN X , WANG L , et al . Joint conjugate gradient and Jacobi iteration based low complexity precoding for massive MIMO systems [C ] // IEEE/CIC International Conference on Communications,July 27-29,2016,Chengdu,China . Piscataway:IEEE Press , 2016 : 1 - 5 .
XIE T , LU Z , HAN Q , et al . Low-complexity LSQR-based linear precoding for massive MIMO systems [C ] // IEEE Vehicular Technology Conference,September 6-9,2015,Boston,USA . Piscataway:IEEE Press , 2015 : 1 - 5 .
XIE T , DAI L , GAO X , et al . Low-complexity SSOR-based precoding for massive MIMO systems [J ] . IEEE Communications Letters , 2016 , 20 ( 4 ): 744 - 747 .
KAMMOUN A , MULLER A , BJORNAON E , et al . Linear precoding based on polynomial expansion:large-scale multi-cell MIMO systems [J ] . IEEE Journal of Selected Topics in Signal Processing , 2014 , 8 ( 5 ): 861 - 875 .
PRABHU H , RODRIGUES J , EDFORS O , et al . Approximative matrix inverse computations for very-large MIMO and applications to linear precoding systems [C ] // Wireless Communications and Networking Conference,April 7-10,2013,Shanghai,China . Piscataway:IEEE Press , 2013 : 2710 - 2715 .
GAO X , DAI L , ZHANG J , et al . Capacity-approaching linear precoding with low-complexity for large-scale MIMO systems [C ] // IEEE International Conference on Communications,June 8-15,2015,London,UK . Piscataway:IEEE Press , 2015 : 1577 - 1582 .
MINANGO J , ALMEIDA C D . Low-complexity MMSE detector based on the first-order Neumann series expansion for massive MIMO systems [C ] // IEEE 9th Latin-American Conference on Communications,November 8-10,2017,Guatemala City,Guatemala . Piscataway:IEEE Press , 2017 : 1 - 5 .
FLORDELIS J , RUSEK F , TUFVESSON F , et al . Massive MIMO performance-TDD versus FDD:what do measurements say? [J ] . IEEE Transactions on Wireless Communications , 2017 ( 99 ):1.
MI D , DIANATI M , ZHANG L , et al . Massive MIMO performance with imperfect channel reciprocity and channel estimation error [J ] . IEEE Transactions on Communications , 2017 ( 99 ): 1 - 1 .
TULINO A M , VERDU S . Random matrix theory and wireless communications [J ] . Communications & Information Theory , 2004 , 1 ( 1 ): 1 - 182 .
BJÖRCK Å . Numerical methods in matrix computations [M ] . Heidelburg : SpringerPress , 2015 .
0
浏览量
688
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构