浏览全部资源
扫码关注微信
[ "谭晓敏(1992- ),女,中国电信股份有限公司广州研究院工程师,主要研究方向为移动互联网大数据应用。" ]
[ "方艾(1981- ),男,中国电信股份有限公司广州研究院工程师,主要研究方向为移动互联网与大数据应用、机器学习应用。" ]
[ "金铎(1970- ),男,中国电信股份有限公司广州研究院高级工程师,主要研究方向为移动互联网应用、云计算、大数据分析。" ]
[ "李长江(1989- ),男,中国电信股份有限公司广州研究院工程师,主要研究方向为IPTV终端技术。" ]
网络出版日期:2019-07,
纸质出版日期:2019-07-20
移动端阅览
谭晓敏, 方艾, 金铎, 等. IPTV用户体验异常的自动化检测[J]. 电信科学, 2019,35(7):159-164.
Xiaomin TAN, Ai FANG, Duo JIN, et al. Automated anomaly detection of IPTV user experience[J]. Telecommunications science, 2019, 35(7): 159-164.
谭晓敏, 方艾, 金铎, 等. IPTV用户体验异常的自动化检测[J]. 电信科学, 2019,35(7):159-164. DOI: 10.11959/j.issn.1000-0801.2019051.
Xiaomin TAN, Ai FANG, Duo JIN, et al. Automated anomaly detection of IPTV user experience[J]. Telecommunications science, 2019, 35(7): 159-164. DOI: 10.11959/j.issn.1000-0801.2019051.
IPTV系统架构复杂,涉及大量终端、网元和连接等。为此,运营商建立了较为完善的监控体系,特别是采集了海量的EPG体验数据,形成多维度的监控指标,旨在监控用户体验水平。然而,监控指标繁多,导致运维人员监察各项指标费时费力,无法及时发现异常,也难以确定异常原因。为解决上述人工运维的痛点,采用一种智能异常检测方法,并根据实际应用进行改进,高效地实现对海量数据的实时分析。实践表明,该方法计算成本较低,适应现网异常变化,快速准确地检测异常,从而减少人力成本,提高运维效率,推进智能运维。
Architecture of IPTV system is complex
involving a large number of terminals
network elements and connections. Therefore
a relatively complete monitoring system
which collected massive EPG experience data and formed multi-dimensional monitoring indicators
had been established to monitor user experience. Due to a large number of indicators
manual monitoring was time consuming and laborious. It was hard to detect anomalies in time and it was impossible to determine the cause of abnormality. To solve the pain points of the operation
an intelligent algorithm was implied and improved to analyze massive experience data. The practice indicates that the algorithm with low calculation cost adapts to abnormal changes in the network and detect anomalies accurately and quickly
which reduces labor costs
improves operation efficiency and promotes intelligent operation.
万阳沙 . 时序数据的异常检测——大数据运维应用 [Z ] .2017. 2017 .
WAN Y S . Anomaly detection of time series data-big data operation and maintenance application [Z ] . 2017 .
CHANDOLA V , CHEBOLI D , KUMAR V . Detecting anomalies in a time series database [R ] . 2009 .
CHOUDHARY P . Introduction to Anomaly Detection [Z ] . 2017 .
KIWARE S S . Detection of outliers in time series data [J ] . Dissertations & Theses-Gradworks , 2010 , 6425 ( 6 ): 1572 - 1575 .
邵开霞 , 陈淡泊 , 周晓峰 . 基于改进的 K-means 聚类方法的多站数据关联异常检测 [J ] . 微型电脑应用 , 2016 ( 11 ).
SHAO K X , CHEN D B , ZHOU X F . Multistation data correlation anomaly detection based on improved K-means clustering method [J ] . Microcomputer Applications , 2016 ( 11 ).
FUJIMAKI R , YAIRI T , MACHIDA K . An anomaly detection method for spacecraft using relevance vector learning [C ] // The 9th Pacific-Asia Conference Knowledge Discovery and Data Mining,PAKDD 2005,May 18-20,2005,Hanoi,Vietnam . New York:ACM Press , 2005 : 785 - 790 .
MOAYEDI H Z , MASNADI-SHIRAZI M , . Arima model for network traffic prediction and anomaly detection [C ] // 2008 International Symposium on Information Technology,Aug 26-28,2008,Kuala Lumpur,Malaysia . Piscataway:IEEE Press , 2008 : 1.
孙建树 , 娄渊胜 , 陈裕俊 . 基于 ARIMA-SVR 的水文时间序列异常值检测 [J ] . 计算机与数字工程 , 2018 , 46 ( 2 ).
SUN J S , LOU Y S , CHEN Y J . Outlier detection of hydrological time series based on ARIMA-SVR model [J ] . Computer and Digital Engineering , 2018 , 46 ( 2 ).
刘雷杰 , 陈雯 , 陈聪 . 基于SDN的网络流量异常检测技术 [J ] . 计算机科学与应用 , 2018 , 8 ( 11 ): 1696 - 1705 .
LIU L J , CHEN W , CHEN C . Anomaly detection technology of network traffic in SDN [J ] . Computer Science and Application , 2018 , 8 ( 11 ): 1696 - 1705 .
夏景明 , 唐玲玲 , 谈玲 , 等 . 基于K-means和MTLS-SVM算法的生理参数监测系统 [J ] . 电信科学 , 2017 , 33 ( 10 ): 49 - 55 .
XIA J M , TANG L L , TAN L , et al . Biometric monitoring system based on K-means & MTLS-SVM algorithm [J ] . Telecommunications Science , 2017 , 33 ( 10 ): 49 - 55 .
陈光 , 白晓颖 , 黄骁飞 , 等 . 使用移动平均线预测云平台服务性能趋势 [J ] . 计算机科学与探索 , 2012 , 6 ( 6 ): 495 - 503 .
CHEN G , BAI X Y , HUANG X F , et al . Cloud performance trend prediction by moving averages [J ] . Journal of Frontiers of Computer Science & Technology , 2012 , 6 ( 6 ): 495 - 503
余宇峰 , 朱跃龙 , 万定生 , 等 . 基于滑动窗口预测的水文时间序列异常检测 [J ] . 计算机应用 , 2014 , 34 ( 8 ): 2217 - 2220 .
YU Y F , ZHU Y L , WAN D S , et al . Time series outlier detection based on sliding window prediction [J ] . Journal of Computer Applications , 2014 , 34 ( 8 ): 2217 - 2220 .
0
浏览量
212
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构