浏览全部资源
扫码关注微信
[ "施羽暇(1984- ),女,博士,中国信息通信研究院高级工程师,主要研究方向为ICT产业、人工智能、集成电路等,参与了“互联网+”、人工智能一系列国家政策的制定。" ]
网络出版日期:2019-04,
纸质出版日期:2019-04-20
移动端阅览
施羽暇. 人工智能芯片技术体系研究综述[J]. 电信科学, 2019,35(4):114-119.
Yuxia SHI. Review on artificial intelligence chip technology system[J]. Telecommunications science, 2019, 35(4): 114-119.
施羽暇. 人工智能芯片技术体系研究综述[J]. 电信科学, 2019,35(4):114-119. DOI: 10.11959/j.issn.1000-0801.2019063.
Yuxia SHI. Review on artificial intelligence chip technology system[J]. Telecommunications science, 2019, 35(4): 114-119. DOI: 10.11959/j.issn.1000-0801.2019063.
人工智能技术是当前各国关注的新焦点。人工智能技术的发展对计算芯片提出了新的需求,深度学习算法需要海量数据的训练,而传统计算架构无法支撑深度学习算法的大规模计算需求,因此新架构的人工智能芯片层出不穷。分析了人工智能芯片不同的技术路线,比较了不同路线的特点,研究了人工智能芯片产业全球及我国的发展态势,分析了我国人工智能芯片发展面临的机遇与挑战,并对未来人工智能芯片技术发展趋势进行了展望。
Artificial intelligence technology is the new focus of current countries.The development of artificial intelligence technology has put forward new requirements for computing chips.Deep learning algorithms require the training of massive data
while traditional computing architectures can’t support the large-scale computing requirements of deep learning algorithms.Therefore
artificial intelligence chips of new architectures emerge one after another.The different technical routes of artificial intelligence chips were analyzed
the characteristics of different routes were compared
the development trend of artificial intelligence chip industry and studied
the opportunities and challenges of artificial intelligence chip development in China were analyzed
and the future development of artificial intelligence chip technology was forecasted.
JOUPPI N P . In-datacenter performance analysis of a tensor processing unit [J ] . 2017 .
CHEN Y H , KRISHNA T , EMER J S , et al . Eyeriss:an energy-efficient reconfigurable accelerator for deep convolutional neural networks [J ] . IEEE Journal of Solid-State Circuits , 2017 , 52 ( 1 ): 127 - 138 .
LECUN Y , BENGIO Y , HINTON G . Deep learning [J ] . Nature , 2015 ( 5 ): 436 - 444 .
ABADI M , AGARWAL A , BARHAM P , et al . TensorFlow:large-scale machine learning on heterogeneous distributed systems [J ] . arXiv:1603.04467. .
SUNDARARAJAN N , SARATCHANDRAN P . Parallel architectures for artificial networks:paradigms and implementations [M ] . New York : ACM PressPress , 1998 : 23 - 27 .
NVIDIA DGX-1.Deep learning [Z ] . 2018 .
BENGIO Y , COURVILLE A , VINCENT P . Representation learning:a review and new perspectives [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2013 , 35 ( 8 ): 1798 - 1828 .
BENJAMIN B V , GAO P , MCQUINN E , et al . Neurogrid:a mixed-analog-digital multichip system for large-scale neural simulations [J ] . Proceedings of the IEEE , 2014 , 102 ( 5 ): 699 - 716 .
DIKOV G , FIROUZI M , ROHRBEIN F , et al . Spiking cooperative stereo-matching at 2 ms latency with neuromorphic hardware [M ] // Biomimetic and Biohybrid Systems . Berlin:Springer , 2017 : 119 - 137 .
施羽暇 . 人工智能芯片技术研究 [J ] . 电信网技术 , 2016 ( 12 ): 11 - 13 .
SHI Y X . Research on artificial intelligence process chip technology [J ] . Network Technology , 2016 ( 12 ): 11 - 13 .
施羽暇 . 促进人工智能芯片发展,助力产业基础实力提升 [J ] . 信息通信技术与政策 , 2018 ( 11 ): 76 - 79 .
SHI Y X . Promoting the development of artificial intelligence chips,enhancing the industrial foundation [J ] . Information and Communications Technology and Policy , 2018 ( 11 ): 76 - 79 .
0
浏览量
2599
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构