浏览全部资源
扫码关注微信
1. 杭州职业技术学院信息工程学院,浙江 杭州 310018
2. 浙江大学计算机科学与技术学院,浙江 杭州 310027
[ "高永梅(1975- ),女,杭州职业技术学院信息工程学院副教授,主要研究方向为数据挖掘、边缘计算。" ]
[ "程冠杰(1996- ),男,浙江大学计算机科学与技术学院博士生,主要研究方向为边缘计算。" ]
网络出版日期:2019-07,
纸质出版日期:2019-07-20
移动端阅览
高永梅, 程冠杰. 基于边缘计算的数据密集型服务部署[J]. 电信科学, 2019,35(7):87-99.
Yongmei GAO, Guanjie CHENG. Data-intensive service deployment based on edge computing[J]. Telecommunications science, 2019, 35(7): 87-99.
高永梅, 程冠杰. 基于边缘计算的数据密集型服务部署[J]. 电信科学, 2019,35(7):87-99. DOI: 10.11959/j.issn.1000-0801.2019170.
Yongmei GAO, Guanjie CHENG. Data-intensive service deployment based on edge computing[J]. Telecommunications science, 2019, 35(7): 87-99. DOI: 10.11959/j.issn.1000-0801.2019170.
日益增长的数据量对数据处理的要求越来越高,于是出现了数据密集型服务。在解决复杂问题时,多个数据密集型服务通常会形成一个服务组合。由于服务组件之间存在大量的数据传输,巨大的传输时延会对系统的整体性能造成影响。在边缘计算环境中,基于否定选择算法,为降低服务组合中的数据传输时间提出了一种优化部署策略。首先,给出了此类数据密集型服务组件部署问题的定义,并为该部署问题构建优化模型;然后,设计了一种否定选择算法来获取最佳的部署方案;为了评估该算法的适用性和收敛性,使用遗传算法和模拟退火算法与其对比,结果显示,提出的算法在这种数据密集型服务组件的部署问题中表现得更为出色。
The demand is getting higher and higher for data processing due to big data volume
thus
data-intensive service shave emerged. When solving complex problems
multiple data-intensive services are often united as a service portfolio. Due to the huge data transmission between service components
a great transmission delay will affect the overall performance of the system. In the edge computing environment
an optimized deployment strategy based on the negative selection algorithm was proposed to reduce the data transmission time in the service composition. Firstly
the definition of such a data-intensive service component deployment problem was given
and the deployment problem was modeled as an optimization model; then
a negative selection algorithm was designed to obtain the best deployment solution. In order to evaluate the applicability and convergence of the algorithm
it was compared with genetic algorithm and simulated annealing algorithm. The results show that proposed algorithm outperforms other schemes in this data-intensive service deployment problem.
WANG L J , SHEN J . Data-intensive service provision based on partical swarm optimization [J ] . International Journal of Computational Intelligence Systems , 2018 , 2 ( 1 ): 330 - 339 .
PAPAZOGLOU M P , TRAVERSO P , DUSTDAR S , et al . Service-oriented computing: a research roadmap [J ] . International Journal of Cooperative Information Systems , 2010 , 17 ( 2 ): 223 - 255 .
LUCAS-SIMARRO J L , MORENO-VOZMEDIANO R , MONTERO R S , et al . Scheduling strategies for optimal service deployment across multiple clouds [J ] . Future Generation Computer Systems , 2013 , 29 ( 6 ): 1431 - 1441 .
YANG L T , LIU L , FAN Q . A survey of user preferences oriented service selection and deployment in multi-cloud environment [C ] // 2017 18th International Conference on Parallel and Distributed Computing,Applications and Technologies (PDCAT),December 18-20,2017,Taipei,China.[S.l.:s.n] . 2017 .
ZHANG Q , ZHU Q Y , ZHANI M F , et al . Dynamic service placement in geographically distributed clouds [J ] . IEEE Journal on Selected Areas in Communications , 2018 , 31 ( 12 ): 762 - 772 .
KANG Y , ZHENG Z , LYU M R . A latency-aware co-deployment mechanism for cloud-based services [C ] // The 2012 IEEE 5th International Conference on Cloud Computing,June 24-29,2012,Honolulu,HI,USA . Piscataway:IEEE Press , 2012 : 630 - 637 .
YUAN D , YANG Y , LIU X , et al . A data placement strategy in scientific cloud workflows [J ] . Future Generation Computer Systems , 2010 , 26 ( 8 ): 1211 - 1214 .
MORENO-VOZMEDIANO R , MONTERO R S , HUEDO E , et al . Orchestrating the development of high availability services on multi-zone and multi-cloud scenarios [J ] . Journal of Grid Computing , 2018 , 16 ( 1 ): 39 - 53 .
朱丹 , 王晓冬 . 移动网络边缘计算与缓存技术研究 [J ] . 铁路计算机应用 , 2017 , 26 ( 8 ): 51 - 54 .
ZHU D , WANG X D . Mobile network edge computing and caching technology [J ] . Railway Computer Application , 2017 , 26 ( 8 ): 51 - 54 .
张建敏 , 谢伟良 , 杨峰义 , 等 . 移动边缘计算技术及其本地分流方案 [J ] . 电信科学 , 2016 , 32 ( 7 ): 132 - 139 .
ZHANG J M , XIE W L , YANG F Y , et al . Mobile edge computing and application in traffic offloading [J ] . Telecommunications Science , 2016 , 32 ( 7 ): 132 - 139 .
刘宜明 , 李曦 , 纪红 . 面向5G超密集场景下的网络自组织关键技术 [J ] . 电信科学 , 2016 , 32 ( 6 ): 44 - 51 .
LIU Y M , LI X , JI H . Key technology of network self- organization in 5G ultra-dense scenario [J ] . Telecommunications Science , 2016 , 32 ( 6 ): 44 - 51 .
DASGUPTA D , YU S , NINO F . Recent advances in artificial immune systems: models and applications [J ] . Applied Soft Computing , 2011 , 11 ( 2 ): 1574 - 1587 .
0
浏览量
474
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构