浏览全部资源
扫码关注微信
1. 杭州电子科技大学通信工程学院,浙江 杭州 310018
2. 宁波职业技术学院电子信息工程学院,浙江 宁波 315800
[ "聂建园(1994- ),女,杭州电子科技大学硕士生,主要研究方向为认知无线电频谱感知、压缩感知等" ]
[ "包建荣(1978- ),男,博士后,杭州电子科技大学教授、博士生导师,主要研究方向为空间无线通信、通信信号处理与自主无线电等" ]
[ "姜斌(1980- ),男,现就职于杭州电子科技大学,主要研究方向为空间无线通信、无线传感器网络等" ]
[ "刘超(1977- ),男,博士,杭州电子科技大学副教授,主要研究方向为无线通信、计算机通信网等。" ]
[ "朱芳(1973- ),男,博士,杭州电子科技大学讲师,主要研究方向为无线通信和信息安全等。" ]
[ "何剑海(1979- ),男,博士,宁波职业技术学院副教授,主要研究方向为认知无线电、协同通信等。" ]
网络出版日期:2019-11,
纸质出版日期:2019-11-20
移动端阅览
聂建园, 包建荣, 姜斌, 等. 基于采样协方差矩阵的混合核SVM高效频谱感知[J]. 电信科学, 2019,35(11):19-26.
Jianyuan NIE, Jianrong BAO, Bin JIANG, et al. An efficient spectrum sensing of mixed kernel SVM based on sampling covariance matrix[J]. Telecommunications science, 2019, 35(11): 19-26.
聂建园, 包建荣, 姜斌, 等. 基于采样协方差矩阵的混合核SVM高效频谱感知[J]. 电信科学, 2019,35(11):19-26. DOI: 10.11959/j.issn.1000-0801.2019210.
Jianyuan NIE, Jianrong BAO, Bin JIANG, et al. An efficient spectrum sensing of mixed kernel SVM based on sampling covariance matrix[J]. Telecommunications science, 2019, 35(11): 19-26. DOI: 10.11959/j.issn.1000-0801.2019210.
近年来随着盲检测算法的提出,越来越多的基于采样协方差矩阵的盲检测算法应用于频谱感知。针对其检测门限是近似值,检测性能会受到影响等问题,提出了基于采样协方差矩阵的混合核函数的支持向量机(support vector machine
SVM)高效频谱感知,通过感知信号采样协方差矩阵的最大最小特征值(maximum minimum eigenvalue
MME)和协方差绝对值(covariance absolute value
CAV)提取的统计量作为SVM的特征向量并训练其生成频谱感知的分类器,无需计算检测门限并且特征提取减少了样本集的大小。利用遗传算法(genetic algorithm
GA)优化混合核函数的SVM的参数。实验结果表明,该方法比MME算法和CAV算法的检测概率有所提高,并且比SVM减少了感知时间,具有良好的实用性。
In recent years
with the blind detection algorithms were proposed
more and more blind algorithms based on sampling covariance matrix were applied to spectrum sensing.The detection threshold was an approximation
and the detection performance would be affected for this algorithms.Thus
the mixed kernel function support vector machine (SVM) efficient spectrum sensing based on sampling covariance matrix was proposed.The statistics which were maximum minimum eigenvalue (MME) and covariance absolute value (CAV) of sensing signal sampling covariance matrices were used as the feature vectors of SVM and were trained to generate a spectrum sensing classifier.The advantage of this algorithm was that it needn’t calculate the detection threshold and the extraction of features reduces size of the sample set.The genetic algorithm (GA) was used to optimize the parameters of mixed kernel function SVM algorithm.The experimental results show that the proposed method has higher detection probability than MME and CAV algorithms
and has less sensing time than SVM
which has good practicability.
LI B , SUN M , LI X , et al . Energy detection based spectrum sensing for cognitive radios over time-frequency doubly selective fading channels [J ] . IEEE Transactions on Signal Processing , 2015 , 63 ( 2 ): 402 - 417 . DOI: 10.1109/TSP.2014.2368996 http://doi.org/10.1109/TSP.2014.2368996 http://ieeexplore.ieee.org/document/6951456/ http://ieeexplore.ieee.org/document/6951456/
ZHANG X , GAO F , CHAI R , et al . Matched filter based spectrum sensing when primary user has multiple power levels [J ] . China Communications , 2015 , 12 ( 2 ): 21 - 31 .
DU J , HUANG H , JING X J , et al . Cyclostationary feature based spectrum sensing via low-rank and sparse decomposition in cognitive radio networks [C ] // 2016 16th International Symposium on Communications and Information Technologies (ISCIT),September 26-28,2016,Qingdao,China . Piscataway:IEEE Press , 2016 : 615 - 619 .
YANG X , LEI K J . Blind detection for primary user based on the sample covariance matrix letters in cognitive radio [J ] . IEEE Communications Letters , 2013 , 15 ( 1 ): 40 - 42 . DOI: 10.1109/LCOMM.2010.111910.101278 http://doi.org/10.1109/LCOMM.2010.111910.101278 http://ieeexplore.ieee.org/document/5648751/ http://ieeexplore.ieee.org/document/5648751/
刘顺兰 , 王静 , 包建荣 . 高检测概率协方差矩阵机会协作频谱感知 [J ] . 电信科学 , 2019 , 35 ( 1 ): 67 - 73 .
LIU S L , WANG J , BAO J R . Covariance matrix opportunistic cooperative spectrum sensing of high detection probability [J ] . Telecommunications Science , 2019 , 35 ( 1 ): 67 - 73 .
LI Z , ZHOU F , SI J , et al . Feasibly efficient cooperative spectrum sensing scheme based on Cholesky decomposition of the correlation matrix [J ] . IET Communications , 2016 , 10 ( 9 ): 1003 - 1011 . DOI: 10.1049/iet-com.2015.0654 http://doi.org/10.1049/iet-com.2015.0654 https://digital-library.theiet.org/content/journals/10.1049/iet-com.2015.0654 https://digital-library.theiet.org/content/journals/10.1049/iet-com.2015.0654
ZHOU F , BEAULIEU N C , LI Z , et al . Feasibility of maximum eigenvalue cooperative spectrum sensing based on Cholesky factorization [J ] . IET Communications , 2016 , 10 ( 2 ): 199 - 206 . DOI: 10.1049/iet-com.2015.0252 http://doi.org/10.1049/iet-com.2015.0252 https://digital-library.theiet.org/content/journals/10.1049/iet-com.2015.0252 https://digital-library.theiet.org/content/journals/10.1049/iet-com.2015.0252
李有均 . 基于随机矩阵的协作频谱感知算法研究 [D ] . 重庆:重庆大学 , 2017 .
LI Y J . Cooperative spectrum sensing algorithm based on random matrix [D ] . Chongqing:Chongqing University , 2017 .
PUTRI S M , SUGIHARTONO I . Energy efficiency in cognitive radio with cooperative MME (maximum to minimum eigenvalue) spectrum sensing method [C ] // 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA),May 20-21,2015,Surabaya,Indonesia . Piscataway:IEEE Press , 2015 : 379 - 384 .
WAEL C B A , ARMI N , ROHMAN B P A . Spectrum sensing for low SNR environment using maximum-minimum eigenvalue (MME) detection [C ] // 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA’16),July 28-30,2016,Lombok,Indonesia . Piscataway:IEEE Press , 2016 : 435 - 438 .
赵知劲 , 胡伟康 , 王海泉 . 基于双特征值极限分布的合作频谱感知算法 [J ] . 电信科学 , 2014 , 30 ( 4 ): 82 - 87 .
ZHAO Z J , HU W K , WANG H Q . Cooperative spectrum sensing algorithm based on double eigenvalue limiting distribution [J ] . Telecommunications science , 2014 , 30 ( 4 ): 82 - 87 .
WANG F , ZHEN Z , WANG B , et al . Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting [J ] . Applied Sciences , 2018 , 8 ( 1 ): 3 - 5 . DOI: 10.3390/app8010003 http://doi.org/10.3390/app8010003 http://www.mdpi.com/2076-3417/8/1/3 http://www.mdpi.com/2076-3417/8/1/3
赵知劲 , 陈京来 . 蜂群优化神经网络的频谱感知 [J ] . 信号处理 , 2016 , 32 ( 1 ): 77 - 82 .
ZHAO Z J , CHEN J L . A neural network spectrum sensing algorithm using bee colony optimization [J ] . Signal Processing , 2016 , 32 ( 1 ): 77 - 82 .
聂勇 , 叶翔 , 翟旭平 . 基于支持向量机和噪声估计的宽带频谱感知方法 [J ] . 电子测量技术 , 2017 , 40 ( 12 ): 88 - 92 .
NIE Y , YE X , ZHAI X P . Wideband spectrum sensing method based on SVM and EN [J ] . Electronic Measurement Technology , 2017 , 40 ( 12 ): 88 - 92 .
翟旭平 , 杨兵兵 , 孟田 . 基于PCA和混合核函数QPSO_SVM频谱感知算法 [J ] . 电子测量技术 , 2016 , 39 ( 9 ): 87 - 90 ,107.
ZHAI X P , YANG B B , MENG T . Spectrum sensing based on PCA and QPSO_SVM with mixed kernel [J ] . Electronic Measurement Technology , 2016 , 39 ( 9 ): 87 - 90 ,107.
翟旭平 , 孟田 , 杨兵兵 . 基于 SOM-SVM 频谱感知算法 [J ] . 电子测量技术 , 2016 , 39 ( 10 ): 76 - 80 .
ZHAI X P , MENG T , YANG B B . Spectrum sensing algorithm based on SOM-SVM [J ] . Electronic Measurement Technology , 2016 , 39 ( 10 ): 76 - 80 .
加尔·肯别克 , 袁杰 , . 变样本量学习最小二乘支持向量机算法 [J ] . 计算机工程 , 2019 , 45 ( 1 ): 192 - 198 ,205. DOI: 10.19678/j.issn.1000-3428.0048673 http://doi.org/10.19678/j.issn.1000-3428.0048673 http://www.ecice06.com/CN/abstract/abstract29528.shtml http://www.ecice06.com/CN/abstract/abstract29528.shtml
JIAE K , YUAN J . Variable samples learning least square support vector machine algorithm [J ] . Computer Engineering , 2019 , 45 ( 1 ): 192 - 198 ,205.
0
浏览量
390
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构