浏览全部资源
扫码关注微信
[ "宋鹏峰(1995- ),男,宁波大学信息科学与工程学院硕士生,主要研究方向为计算机视觉与图像处理" ]
[ "叶庆卫(1970- ),男,博士,宁波大学信息科学与工程学院教授、硕士生导师,主要研究方向为信号检测、最优化搜索、视频识别与跟踪等" ]
[ "陆志华(1983- ),男,博士,宁波大学信息科学与工程学院讲师,主要研究方向信号处理、多运动目标的实时跟踪、统计信号处理算法研究和应用等" ]
[ "周宇(1960- ),男,宁波大学信息科学与工程学院教授、硕士生导师,主要研究方向为信号处理、网络与信息安全、物联网技术等" ]
网络出版日期:2019-11,
纸质出版日期:2019-11-20
移动端阅览
宋鹏峰, 叶庆卫, 陆志华, 等. 基于拟合型弱分类器的AdaBoost算法[J]. 电信科学, 2019,35(11):27-35.
Pengfeng SONG, Qingwei YE, Zhihua LU, et al. AdaBoost algorithm based on fitted weak classifier[J]. Telecommunications science, 2019, 35(11): 27-35.
宋鹏峰, 叶庆卫, 陆志华, 等. 基于拟合型弱分类器的AdaBoost算法[J]. 电信科学, 2019,35(11):27-35. DOI: 10.11959/j.issn.1000-0801.2019219.
Pengfeng SONG, Qingwei YE, Zhihua LU, et al. AdaBoost algorithm based on fitted weak classifier[J]. Telecommunications science, 2019, 35(11): 27-35. DOI: 10.11959/j.issn.1000-0801.2019219.
针对AdaBoost算法通过最小化训练错误率来选择弱分类器造成的精度不佳问题以及单阈值作为弱分类器训练过程较慢难以收敛问题,提出了一种基于拟合型弱分类器的AdaBoost算法。首先针对每个特征,在特征值与标记值之间建立映射关系,引入最小二乘法求解拟合多项式函数,并转换成离散分类值,从而获得弱分类器。其次从获得的众多弱分类器中,选择分类误差最小的弱分类器作为本轮迭代的最佳弱分类器,构成新的 AdaBoost 强分类器。与传统训练算法相比,极大地减少了待选弱分类器的个数。选取 UCI 数据集和MIT人脸图像数据库进行实验验证,相较于传统Discrete-AdaBoost算法,改进算法的训练速度提升了一个数量级,人脸检测率可达96.59%。
AdaBoost algorithm was proposed to minimize the accuracy caused by weak classifiers by minimizing the training error rate
and the single threshold was weaker and difficult to converge.The AdaBoost algorithm based on the fitted weak classifier was proposed.Firstly
the mapping relationship between eigenvalues and marker values was established.The least squares method was introduced to solve the fitting polynomial function
and the continuous fitting values were converted into discrete categorical values
thereby obtaining a weak classifier.From the many classifiers obtained
the classifier with smaller fitting error was selected as the weak classifier to form a new AdaBoost strong classifier.The UCI dataset and the MIT face image database were selected for experimental verification.Compared with the traditional Discrete-AdaBoost algorithm
the training speed of the improved algorithm was increased by an order of magnitude.And the face detection rate can reach 96.59%.
唐彪 , 金炜 , 符冉迪 , 等 . 多稀疏表示分类器决策融合的人的脸识别 [J ] . 电信科学 , 2018 , 34 ( 4 ): 31 - 40 .
TANG B , JIN W , FU R D , et al . Face recognition using decision fusion of multiple sparse representation-based classifier [J ] . Telecommunications Science , 2018 , 34 ( 3 ): 31 - 40 .
LI X , WANG L , SUNG E . AdaBoost with SVM-based component classifiers [J ] . Engineering Applications of Artificial Intelligence , 2008 , 21 ( 5 ): 785 - 795 . DOI: 10.1016/j.engappai.2007.07.001 http://doi.org/10.1016/j.engappai.2007.07.001 http://www.sciencedirect.com/science/article/pii/S0952197607000978 http://www.sciencedirect.com/science/article/pii/S0952197607000978
YI X , YING W , PENG J . An improved AdaBoost face detection algorithm based on the weighting parameters of weak classifier [C ] // IEEE International Conference on Cognitive Informatics& Cognitive Computing,July 16-18,2013,New York,NY,USA . Piscataway:IEEE Press , 2013 .
徐凯 , 陈平华 , 刘双印 . 基于 AdaBoost-Bayes 算法的中文文本分类系统 [J ] . 微电子学与计算机 , 2016 , 33 ( 6 ): 63 - 67 .
XU K , CHEN P H , LIU S Y . A chinese text classification system based on AdaBoost-Bayes algorithm [J ] . Microelectronics &Computer , 2016 , 33 ( 6 ): 63 - 67 .
HUANG Z , . Vehicle pedestrian detection algorithm based on AdaBoost [C ] // International Conference on Intelligent Transportation,December 19-20,2015,Halong Bay,Vietnam . Piscataway:IEEE Press , 2015 .
WU S , NAGAHASHI H . Parameterized AdaBoost:introducing a parameter to speed up the training of real AdaBoost [J ] . IEEE Signal Processing Letters , 2014 , 21 ( 6 ): 687 - 691 . DOI: 10.1109/LSP.2014.2313570 http://doi.org/10.1109/LSP.2014.2313570 http://dx.doi.org/10.1109/LSP.2014.2313570 http://dx.doi.org/10.1109/LSP.2014.2313570
ZHU J Q , CAI C H . Real-time face detection using gentle AdaBoost algorithm and nesting cascade structure [C ] // International Symposium on Intelligent Signal Processing & Communications Systems,Nov 4-7,2012,Taipei, China . Piscataway:IEEE Press , 2013 .
KARLOS S , FAZAKIS N , KOTSIANTIS S , et al . Self-Train LogitBoost for semi-supervised learning [C ] // EANN,Sep 25-28,2015,Rhodes,Greece . Heidelberg:Springer , 2015 .
GAO C , SANG N , TANG Q . On selection and combination of weak learners in AdaBoost [J ] . Pattern Recognition Letters , 2010 , 31 ( 9 ): 991 - 1001 . DOI: 10.1016/j.patrec.2009.12.019 http://doi.org/10.1016/j.patrec.2009.12.019 http://www.sciencedirect.com/science/article/pii/S0167865509003614 http://www.sciencedirect.com/science/article/pii/S0167865509003614
YANG H , LIU S , LU R , et al . Prediction of component content in rare earth extraction process based on ESNs-Adaboost [J ] . IFAC-Papers on Line , 2018 , 51 ( 24 ): 42 - 47 .
CAO Y , MIAO Q G , LIU J C , et al . Advance and prospects of AdaBoost algorithm [J ] . Acta Automatica Sinica , 2013 , 39 ( 6 ): 745 - 758 . DOI: 10.3724/SP.J.1004.2013.00745 http://doi.org/10.3724/SP.J.1004.2013.00745 http://www.aas.net.cn/CN/abstract/abstract18100.shtml http://www.aas.net.cn/CN/abstract/abstract18100.shtml
CHENG W C , JHAN D M . A self-constructing cascade classifier with AdaBoost and SVM for pedestrian detection [J ] . Engineering Applications of Artificial Intelligence , 2013 , 26 ( 3 ): 1016 - 1028 . DOI: 10.1016/j.engappai.2012.08.013 http://doi.org/10.1016/j.engappai.2012.08.013 http://dx.doi.org/10.1016/j.engappai.2012.08.013 http://dx.doi.org/10.1016/j.engappai.2012.08.013
田垅 , 刘宗田 . 最小二乘法分段直线拟合 [J ] . 计算机科学 , 2012 , 39 ( S1 ): 482 - 484 .
TIAN L , LIU Z T . Least-squares method piecewise linear fitting [J ] . Computer Science , 2012 , 39 ( S1 ): 482 - 484 .
0
浏览量
217
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构