浏览全部资源
扫码关注微信
[ "程露(1995- ),女,南京邮电大学通信与信息学院硕士生,主要研究方向为移动通信" ]
[ "杨丽花(1984- ),女,南京邮电大学副教授,主要研究方向为移动无线通信、通信信号处理、多载波通信系统等" ]
[ "王增浩(1994- ),男,南京邮电大学通信与信息学院硕士生,主要研究方向为移动通信" ]
[ "张捷(1996- ),女,南京邮电大学通信与信息学院硕士生,主要研究方向为宽带移动通信" ]
[ "梁彦(1979- ),女,南京邮电大学副教授,主要研究方向为宽带无线通信、通信信号处理等" ]
网络出版日期:2020-09,
纸质出版日期:2020-09-20
移动端阅览
程露, 杨丽花, 王增浩, 等. 基于历史信息的软卡尔曼滤波迭代时变信道估计方法[J]. 电信科学, 2020,36(9):23-31.
Lu CHENG, Lihua YANG, Zenghao WANG, et al. Historical information based iterative soft Kalman time-varying channel estimation method[J]. Telecommunications science, 2020, 36(9): 23-31.
程露, 杨丽花, 王增浩, 等. 基于历史信息的软卡尔曼滤波迭代时变信道估计方法[J]. 电信科学, 2020,36(9):23-31. DOI: 10.11959/j.issn.1000-0801.2020038.
Lu CHENG, Lihua YANG, Zenghao WANG, et al. Historical information based iterative soft Kalman time-varying channel estimation method[J]. Telecommunications science, 2020, 36(9): 23-31. DOI: 10.11959/j.issn.1000-0801.2020038.
针对高速移动MIMO-OFDM系统,提出了一种基于历史信息的软卡尔曼滤波迭代时变信道估计方法。考虑高速铁路环境中不同列车在相同位置处的信道具有很强的相关性,首先利用历史列车的信道信息获取最优基函数,基于该基函数对信道建模,将对信道的估计转换成基系数的估计,降低了计算复杂度和提高了信道估计精度。其次,在每次迭代中采用了软卡尔曼滤波和数据检测联合的方法估计基系数;为了更好地减少数据检测误差传播的影响,采用软数据检测方法,并且在每次迭代中将软数据检测误差作为噪声进行处理。另外,采用的软卡尔曼滤波器不涉及 AR 模型跟踪因子,避免了估计跟踪因子引入的计算复杂度。仿真结果表明,所提方法具有更好的估计性能,且更适用于实际的高速移动场景的时变信道获取。
For high-speed mobile MIMO-OFDM systems
a historical information based iterative soft-Kalman filter time-varying channel estimation method was proposed.Considering that the channels experienced by different trains in the high-speed railway environment have strong correlation
the channel information of the historical train was firstly used to obtain the optimal basis function
which can be employed to model the channel.By the optimal basis function
the computational complexity was reduced and the channel estimation accuracy was improved for the proposed method.Secondly
the soft-Kalman filter and data detection were jointed to estimate the base coefficient in each iteration.To reduce the effect of data detection error propagation on the channel estimation
the soft data detection scheme was employed and the soft detection error was treated as noise in each iteration.In addition
the soft-Kalman filter used in the proposed method does not involve the AR model tracking factor
thereby avoiding the computational complexity introduced by the estimated tracking factor.The simulation results show that the proposed method has better estimation performance
and is more suitable for time-varying channel acquisition of actual high-speed mobile scenarios.
HU Y , LI H , CHANG Z , et al . Scheduling strategy for multimedia heterogeneous high-speed train networks [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 4 ): 3265 - 3279 .
SUN N , ZHAO Y , SUN L , et al . Distributed and dynamic resource management for wireless service delivery to high-speed trains [J ] . IEEE Access , 2017 ( 5 ): 620 - 632 .
TANG Q , LONG H , YANG H J , et al . An enhanced LMMSE channel estimation under high speed railway scenarios [C ] // Proceedings of 2017 IEEE International Conference on Communications Workshops . Piscataway:IEEE Press , 2017 : 999 - 1004 .
LIAO Y , SUN G D , SHEN X F , et al . BEM-based channel estimation and interpolation methods for doubly-selective OFDM channel [C ] // Proceedings of 2018 IEEE International Conference on Smart Internet of Things . Piscataway:IEEE Press , 2018 : 70 - 75 .
REN X , TAO M X , CHEN W . Compressed channel estimation with position-based ICI elimination for high-mobility SIMO-OFDM systems [J ] . IEEE Transactions on Vehicular Technology , 2015 , 65 ( 8 ): 6204 - 6216 .
YANG L H , TANG L X , LIANG Y . Iterative channel estimation for MIMO-OFDM system in fast time-varying channels [J ] . KSII Transactions on Internet and Information Systems , 2016 , 66 ( 5 ): 4240 - 4258 .
WANG X Y , WANG G P , SUN J , et al . Channel estimation with new basis expansion model for wireless communications on hign speed railways [C ] // Proceedings of 2016 IEEE 83rd Vehicular Technology Conference . Piscataway:IEEE Press , 2016 : 1 - 5 .
YE H , LI G Y , JUANG B H . Power of deep learning for channel estimation and signal detection in OFDM systems [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 1 ): 114 - 117 .
CHUN C J , KANG J M , KIM I M . Deep learning based joint pilot design and channel estimation for multiuser MIMO channels [J ] . IEEE Communications Letters , 2019 , 23 ( 11 ): 1999 - 2003 .
MA X L , YE H , LI Y . Learning assisted estimation for time-varying channel [C ] // Proceedings of 2018 15th International Symposium on Wireless Communication Systems (ISWCS).[S.l.:s.n] . 2018 , 28 - 31 .
YANG Y W . Deep learning-based channel estimation for doubly selective fading channels [J ] . IEEE Access , 2019 ( 7 ): 36579 - 36589 .
ZHAO Y R , WANG X Y , WANG G P , et al . Channel estimation and throughput evalution for 5G wireless communication systems in various scenarios on high speed railways [J ] . China Communication , 2018 , 15 ( 4 ): 86 - 97 .
WANG X Y , WANG G P , FAN G F , et al . Channel estimation with expectarion maximization and historical information based basis expansion model for wireless communication systems on high speed railway [J ] . IEEE Access , 2018 ( 6 ): 72 - 80 .
HE R S , ZHONG Z D , AI B , et al . Measurements and analysis of short-term fading behavior for high-speed rail viaduct scenario [C ] // Proceedings of 2012 IEEE International Conference on Communications . Piscataway:IEEE Press , 2012 : 4563 - 4567 .
MIN C K , CHANG N , CHA J S . MIMO-OFDM downlink channel prediction for IEEE 802.16e systems using Kalman filter [C ] // Proceedings of 2007 IEEE Wireless Communications and Networking Conference . Piscataway:IEEE Press , 2007 .
CHEN B S , YANG C Y , LIAO W J . Robust fast time-varying multipath fading channel estimation and equalization for MIMO-OFDM systems via a fuzzy method [J ] . IEEE Transactions on Vehicular Technology , 2012 , 61 ( 4 ): 1599 - 1609 .
KIM J Y , PARK B , HANG D . Robust channel estimation in a mobile MIMO OFDM system [C ] // Proceedings of 2004 IEEE 59th Vehicular Technology Conference . Piscataway:IEEE Press , 2004 : 594 - 597 .
ZHAO N , YU F R , SUN H J , et al . Interference alignment with delayed channel state information and dynamic AR-model channel prediction in wireless networks [J ] . Wireless Networks , 2015 , 21 ( 4 ): 1227 - 1242 .
NATORI T , TANABE N , FURUKAWA T . A MIMO-OFDM channel estimation algorithm for high-speed movement environments [C ] // Proceedings of 2014 6th International Symposium on Communications,Control and Signal Processing . Piscataway:IEEE Press , 2014 : 348 - 351 .
SIMON E P , KHALIGHI M A . Iterative soft-kalman channel estimation for fast time-varying MIMO-OFDM channels [J ] . IEEE Wireless Communications Letters , 2015 , 2 ( 6 ): 599 - 602 .
0
浏览量
244
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构