浏览全部资源
扫码关注微信
[ "庞涛(1977- ),男,中国电信股份有限公司研究院工程师,主要研究方向为大数据应用、人工智能、智能终端技术等" ]
[ "丘海华(1991- ),男,中国电信股份有限公司研究院工程师,主要研究方向为人工智能、AR技术、边缘计算等" ]
[ "潘碧莹(1994- ),女,中国电信股份有限公司研究院工程师,主要研究方向为人工智能、智能终端技术等" ]
网络出版日期:2020-05,
纸质出版日期:2020-05-20
移动端阅览
庞涛, 丘海华, 潘碧莹. 手机终端人工智能关键技术研究[J]. 电信科学, 2020,36(5):145-151.
Tao PANG, Haihua QIU, Biying PAN. Research on artificial intelligence key technologies of mobile terminal[J]. Telecommunications science, 2020, 36(5): 145-151.
庞涛, 丘海华, 潘碧莹. 手机终端人工智能关键技术研究[J]. 电信科学, 2020,36(5):145-151. DOI: 10.11959/j.issn.1000-0801.2020045.
Tao PANG, Haihua QIU, Biying PAN. Research on artificial intelligence key technologies of mobile terminal[J]. Telecommunications science, 2020, 36(5): 145-151. DOI: 10.11959/j.issn.1000-0801.2020045.
随着移动终端软硬件技术的进步,移动终端的机器学习能力得以挖掘。从手机终端人工智能技术整体框架入手,研究了端侧人工智能硬件加速技术,对比了当前主流端侧机器学习框架和神经网络模型压缩等软件技术,分析了AI应用发展趋势,总结了手机终端人工智能技术进展和未来发展趋势。
With the progress of software and hardware technology of mobile terminals
the machine learning ability of mobile terminals has been explored.Starting from the overall framework of mobile terminal artificial intelligence technology
the end-to-end artificial intelligence hardware acceleration technology was studied
mainstream on-device machine learning frameworks
neural network model compression and other software technologies were compared
the development trend of AI application was analyzed
and the current technological progress and future development trend of mobile terminal artificial intelligence were summarized.
NEIL C , THOMPSON , SVENJA SPANUTH . The decline of computers as a general purpose technology:why deep learning and the end of Moore’s law are fragmenting computing [J ] . 2018 .
艾瑞咨询 . 中国人工智能手机行业研究报告 [R ] . 2018 .
IResearch . China artificial intelligence mobile phone industry research report [R ] . 2018 .
中国电信 . 中国电信全网通AI手机白皮书2.0 [R ] . 2018 .
China Telecom . China Telecom full netcom AI mobile white paper 2.0 [R ] . 2018 .
CHEN Y J , CHEN T S , XU Z W , et al . DianNao family:energy-efficient hardware accelerators for machine learning [J ] . Communications of the ACM , 2016 , 59 ( 11 ): 105 - 112 .
CHENGJ , WANG PS , LIG , et al . Recent advances in efficient computation of deep convolutional neural networks [J ] . arXiv,2018:1802.00939 ,
LI H , ASIM KADAV , IGOR DURDANOVIC , et al . Pruning filters for efficient convnets [J ] .arXiv,ICLR 2017:1608.08710.
HAN S , MAO H , DALLY W J . Deep compression:compressing deep neural networks with pruning,trained quantization and Huffman coding [J ] . arXiv Preprint arXiv , 2015 :1510.00149.
BENOIT J , SKIRMANTAS K , BO C , et al . Quantization and training of neural networks for efficient integer-arithmetic-only inference [J ] . arXiv,2017:1712.05877 ,
SHENG T , FENG C , ZHUO S J , et al . A quantization-friendly separable convolution for mobilenets [J ] . arXiv , 2019 :1803.08607.
庞涛 . 开源深度学习框架发展现状与趋势研究 [J ] . 互联网天地 , 2018 ( 4 ): 46 - 54 .
PANG T . Research on development status and trend of open source deep learning framework [J ] . Internet World , 2018 ( 4 ): 46 - 54 .
余霆嵩 . 纵览轻量化卷积神经网络:SqueezeNet、MobileNet、ShuffleNet、Xception [J ] . 2018 .
YU T S . Overview of lightweight convolutional neural networks:SqueezeNet、MobileNet、ShuffleNet、Xception [J ] . 2018 .
HARD A , RAO K , MATHEWS R , et al . Federated learning for mobile keyboard prediction [J ] . arXiv,2018:1811.03604v1 ,
中国人工智能产业发展联盟(AIIA) . 手机人工智能技术与应用白皮书 [R ] . 2019 .
China Artificial Intelligence Industry Development Alliance (AIIA) . Mobile phone artificial intelligence technology and application white paper [R ] . 2019 .
0
浏览量
744
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构