浏览全部资源
扫码关注微信
1. 中国移动通信有限公司研究院,北京 100053
2. 中国移动通信集团山西有限公司,山西 太原 030027
[ "张科(1981- ),男,中国移动通信有限公司研究院工程师,主要研究方向为电信客户信用建模、社交网络信息传播、机器学习、推荐系统等" ]
[ "孙越佳(1987- ),女,现就职于中国移动通信有限公司研究院,主要研究方向为电信客户信用建模、商务智能、机器学习等" ]
[ "韩海(1981- ),男,中国移动通信集团山西有限公司高级工程师、PMP,主要研究方向为互联网信息化、电子商务、信息系统项目管理" ]
网络出版日期:2020-02,
纸质出版日期:2020-02-20
移动端阅览
张科, 孙越佳, 韩海. 基于协同过滤与社交网络混合算法的客户信用建模及授信方法[J]. 电信科学, 2020,36(2):52-60.
Ke ZHANG, YueJia SUN, Hai HAN. Customer credit modeling and credit granting method based on hybrid algorithm of collaborative filtering and social network[J]. Telecommunications science, 2020, 36(2): 52-60.
张科, 孙越佳, 韩海. 基于协同过滤与社交网络混合算法的客户信用建模及授信方法[J]. 电信科学, 2020,36(2):52-60. DOI: 10.11959/j.issn.1000-0801.2020048.
Ke ZHANG, YueJia SUN, Hai HAN. Customer credit modeling and credit granting method based on hybrid algorithm of collaborative filtering and social network[J]. Telecommunications science, 2020, 36(2): 52-60. DOI: 10.11959/j.issn.1000-0801.2020048.
随着信用甄别市场需求的扩大,传统FICO信用建模方法依赖受信人大量历史信用行为、对群体属性识别能力弱的局限不断显现,造成了信用评分冷启动问题。提出了一种基于协同过滤与社交网络混合算法的信用评定模型,可有效解决信用评定冷启动困难的问题,在受信人信用评定数据不充足的情况下,亦可完成对其信用的相对准确评估。该算法首先基于受信人基本身份特征,通过协同过滤方法授予初始信用分,再通过社交网络信任图、群体聚类的学习成果修正信用评估模型。实验结果表明,该方法的信用预评估误差较低,可逐步引导预评分平稳过渡至正式评估。将该方法应用于信用培育期,可培养受信人良好的信用习惯,引导受信人信用行为良性循环。
With the expansion of market demand for customer credit screening
the traditional FICO credit modeling method relies on a large number of historical credit behavior of trustees
and the limitation of weak ability to identify group attributes is constantly emerging
which causes the problem of cold start of credit scoring.Based on the identity characteristics of the trustee
the initial score through collaborative filtering method was firstly granted
and then the credit evaluation was modified through social network trust graph and group clustering learning results to solve the credit cold start problem during the transition period of scoring.The experimental results show that the credit pre-evaluation error of this method is low and can be smoothly transited to formal evaluation.This method can cultivate good credit habits of trustees in the initial stage of credit
guide the virtuous circle of credit behavior.
张晶 . 大数据时代个人信用评分的新趋势 [J ] . 征信 , 2017 , 35 ( 12 ): 7 - 12 .
ZHANG J . New trends in personal credit scoring in the big data era [J ] . Credit Reference , 2017 , 35 ( 12 ): 7 - 12 .
GOLDBERG D , NICHOLS D , OKI B , et al . Using collaborative filtering to weavean information tapestry [J ] . Communications of the ACM , 1992 , 35 ( 12 ): 61 - 70 .
JACCARD P . The distribution of the flora in the alpine zone [J ] . New Phytologist , 1912 , 11 ( 2 ): 37 - 50 .
Kardi Teknomo’s page,bray curtis distance [Z ] . 2018 .
李聪 , 梁昌勇 , 董珂 . 基于项目类别相似性的协同过滤推荐算法 [J ] . 合肥工业大学学报(自然科学版) , 2008 , 31 ( 3 ): 360 - 363 .
LI C , LIANG C Y , DONG K . A collaborative filtering recommendation algorithm based on item category similarity [J ] . Journal of Hefei University of Technology (Natural Science) , 2008 , 31 ( 3 ): 360 - 363 .
罗珍珍 . 基于社交网络数据的个人征信研究 [J ] . 海南金融 , 2017 ( 5 ).
LUO Z Z . Personal credit research based on social network data [J ] . Hainan Finance , 2017 ( 5 ).
王佳蕾 , 郭耀 , 刘志宏 . 基于社交网络信任关系的服务推荐方法 [J ] . 计算机科学 , 2018 , 45 ( z2 ): 402 - 408 .
WANG J L , GUO Y , LIU Z H . Service recommendation method based on social network trust relationships [J ] . Computer Science , 2018 , 45 ( z2 ): 402 - 408 .
秦凯 , 吴家丽 , 宋益多 , 等 . 基于社会信任的协同过滤算法研究综述 [J ] . 智能计算机与应用 , 2015 , 5 ( 4 ): 55 - 59 .
QIN K , WU J L , SONG Y D , et al . A review of collaborative filtering algorithm based on social trust relationships [J ] . Intelligent Computer and Applications , 2015 , 5 ( 4 ): 55 - 59 .
王茜 , 王均波 . 一种改进的协同过滤推荐算法 [J ] . 计算机科学 , 2010 , 37 ( 6 ): 226 - 228 ,243.
WANG Q , WANG J B . Improved collaborative filtering recommendation algorithm [J ] . Computer Science , 2010 , 37 ( 6 ): 226 - 228 ,243.
谷红勋 , 杨珂 . 基于大数据的移动用户行为分析系统与应用案例 [J ] . 电信科学 , 2016 , 32 ( 3 ): 139 - 146 .
GU H X , YANG K . Mobile user behavior analysis system and applications based on big data [J ] . Telecommunications Science , 2016 , 32 ( 3 ): 139 - 146 .
李晓瑜 . 协同过滤推荐算法综述 [J ] . 商丘师范学院学报 , 2018 , 34 ( 9 ): 7 - 10 .
LI X Y . Survey of collaborative filtering algorithms [J ] . Journal of Shangqiu Normal University , 2018 , 34 ( 9 ): 7 - 10 .
刘新海 , 韩涵 , 丁伟 , 等 . 电信大数据在信用风险管理中的应用 [J ] . 大数据 , 2017 , 3 ( 3 ): 94 - 102 .
LIU X H , HAN H , DING W , et al . Application of telecommunication big data in credit risk management [J ] . Big Data Research , 2017 , 3 ( 3 ): 94 - 102 .
陈涛 , 鲁萌 , 陈彦名 . 运营商大数据技术应用研究 [J ] . 电信科学 , 2017 , 33 ( 1 ): 130 - 134 .
CHEN T , LU M , CHEN Y M . Research on operators’ big data technologies and applications [J ] . Telecommunications Science , 2017 , 33 ( 1 ): 130 - 134 .
0
浏览量
395
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构