浏览全部资源
扫码关注微信
1. 绍兴文理学院上虞分院,浙江 绍兴 312300
2. 浙江大学,浙江 杭州 310058
[ "李勇燕(1981- ),女,绍兴文理学院上虞分院讲师,主要研究方向为无线传感器" ]
[ "吴坚平(1983- ),男,浙江大学博士生,主要研究方向为复杂异构数据融合" ]
网络出版日期:2020-03,
纸质出版日期:2020-03-20
移动端阅览
李勇燕, 吴坚平. 基于IPSO-MC融合算法的无线传感器节点定位[J]. 电信科学, 2020,36(3):11-18.
Yongyan LI, Jianping WU. Wireless sensor node localization based on IPSO-MC[J]. Telecommunications science, 2020, 36(3): 11-18.
李勇燕, 吴坚平. 基于IPSO-MC融合算法的无线传感器节点定位[J]. 电信科学, 2020,36(3):11-18. DOI: 10.11959/j.issn.1000-0801.2020063.
Yongyan LI, Jianping WU. Wireless sensor node localization based on IPSO-MC[J]. Telecommunications science, 2020, 36(3): 11-18. DOI: 10.11959/j.issn.1000-0801.2020063.
针对无线传感器网络(WSN)中的节点定位精度不足的问题,提出一种基于优化粒子算法与膜计算(improved particle swarm optimization by membrane computing,IPSO-MC)的融合算法。采用Kent映射初始化种群和引入领域粒子提高粒子群全局优化能力,通过权重因子和非线性极值扰动提高粒子群的局部优化能力,利用Levy飞行机制优化个体位置,借助膜计算的进化规则最终获得粒子群算法的最优解。仿真实验表明,与鸡群算法、改进的粒子群算法和膜计算的定位算法相比,本文算法在参考节点比例指标对比中分别提高3.24%、5.12%和8.15%、在节点个数指标对比中分别提高2.26%、7.82%和9.81%以及在通信半径指标对比中分别提高2.15%、5.5%和7.5%,说明该算法在节点定位方面具有良好的效果。
To solve the problem of insufficient node positioning accuracy in wireless sensor networks
an algorithm based on improved particle swarm optimization by membrane computing (IPSO-MC) was proposed.Kent mapping was used to initialize the population and domain particles were introduced to improve the global optimization of the particle swarm.The weight factor and nonlinear extreme value perturbation were used to improve the local optimization ability of the particle swarm
and the Levy flight mechanism was used to optimize the individual position.Finally
the optimal solution of the particle swarm algorithm was obtained by the evolutionary rules of the membrane computing.Simulation experiments show that compared with the chicken flock algorithm
the improved particle swarm algorithm and the membrane computing
the proposed algorithm improves 3.24%
5.12% and 8.15% in the comparison of reference node ratio indicators
and the increase in the number of nodes indicators by 2.26%
7.82% and 9.81%
and the comparison of communication radius indicators increased by 2.15%
5.5% and 7.5%
respectively.This indicates that the algorithm has a good effect in node localization.
PARULPREET S , ARUN K , ANI K , et al . Computational intelligence techniques for localization in static and dynamic wireless sensor networks-a review [M ] // Computational Intelligence in Sensor Networks . Heidelberg:Berlin Springer , 2019 : 25 - 54 .
王灵矫 , 梁雅媚 , 郭华 . 基于距离估计的无线传感器网络移动节点定位研究 [J ] . 云南大学学报(自然科学版) , 2019 , 41 ( 3 ): 476 - 483 .
WANG L J , LIANG Y M , GUO H . Study on mobile nodes location based on distance estimation for wireless sensor network [J ] . Journal of Yunnan University (Natural Sciences) , 2019 , 41 ( 3 ): 476 - 483 .
田丽芳 , 徐慧娟 . 无线传感器网络中基于测距修正的定位算法 [J ] . 传感技术学报 , 2017 , 30 ( 10 ): 1572 - 1577 .
TIAN L F , XU H J . Localization algorithm based on modifying average hop distance in wireless sensor networks [J ] . Journal of Transduction Technology , 2017 , 30 ( 10 ): 1572 - 1577 .
李田来 , 刘方爱 . 带混沌映射的 WSN 蝴蝶优化定位算法 [J ] . 计算机工程与设计 , 2019 , 40 ( 6 ): 1729 - 1733 .
LI T L , LIU F A . Butterfly optimization localization algorithm with chaotic map in wireless sensor networks [J ] . Computer Engineering and Design , 2019 , 40 ( 6 ): 1729 - 1733 .
刘宏 , 韩亚波 , 张时斌 . 基于自适应罚函数优化粒子群的 WSN定位算法 [J ] . 传感技术学报 , 2018 , 31 ( 8 ): 1253 - 1257 ,1265.
LIU H , HAN Y B , ZHANG S B . WSNs Localization algorithm based on self-adaptive penalty function optimization particle swarm optimization [J ] . Journal of Transduction Technology , 2018 , 31 ( 8 ): 1253 - 1257 ,1265.
张健 , 郭星 , 李炜 . 基于果蝇优化算法的WSN节点定位研究 [J ] . 微电子学与计算机 , 2018 , 35 ( 4 ): 89 - 92 .
ZHANG J , GUO X , LI W . Research of WSN node localization based on fruit fly optimization algorithm [J ] . Microelectronics &Computer , 2018 , 35 ( 4 ): 89 - 92 .
CUI L , XU C , LI G , et al . A high accurate localization algorithm with DV-hop and differential evolution for wireless sensor network [J ] . Applied Soft Computing , 2018 ( 68 ): 39 - 52 .
PHOEMPHON S , SO-IN C , NIYATO D T . A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization [J ] . Applied Soft Computing , 2018 ( 65 ): 101 - 120 .
CHEIKHROUHOU O , BHATTI G M , ALROOBAEA R , et al . A hybrid DV-hop algorithm using RSSI for localization in largescale wireless sensor networks [J ] . Sensors , 2018 , 18 ( 5 ): 1469 - 1482 .
STRUMBERGER I , TUBA E , BACANIN N , et al . Wireless sensor network localization problem by hybridized moth search algorithm [C ] // Proceeding of 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC) . Piscataway:IEEE Press , 2018 : 316 - 321 .
SHARMA G . Novel DV-hop localization algorithm using teaching learning based optimization for wireless sensor networks [J ] . Telecommunication Systems , 2018 , 67 ( 2 ): 163 - 178 .
KUMAR S , LOBIYAO D K . Novel DV-hop localization algorithm for wireless sensor networks [J ] . Telecommunication Systems , 2017 , 64 ( 3 ): 509 - 524 .
EDWARDS A M , PHILLIPS R A , WATKING N W , et al Revisiting levy flight search patterns of wandering albatrosses,bumblebees and deer [J ] . Nature , 2007 ( 449 ): 1044 - 1048 .
GH P . Computing with membranes [J ] . Journal of Computer and System Science , 2000 , 61 ( 1 ): 108 - 143 .
李鹏 , 陈桂芬 , 胡文韬 . 基于鸡群算法的无线传感器网络定位研究 [J ] . 传感技术学报 , 2019 , 32 ( 6 ): 866 - 871 ,891.
LI P , CHEN G F , HU W T . Research on wireless sensor network location based on chicken swarm optimization [J ] . Journal of Transduction Technology , 2019 , 32 ( 6 ): 866 - 871 ,891.
0
浏览量
398
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构