浏览全部资源
扫码关注微信
1. 北京交通大学电子信息工程学院,北京 100044
2. 华东交通大学信息工程学院,江西 南昌 310033
3. 南方科技大学电子与电气工程系,广东 深圳 518000
[ "马小婷(1993- ),女,北京交通大学电子信息工程学院博士生,主要研究方向为车联网、移动边缘计算、车辆编队" ]
[ "赵军辉(1973- ),男,博士,华东交通大学信息工程学院、北京交通大学电子信息工程学院教授、博士生导师,主要研究方向为移动通信、智能信息处理、物联网等" ]
[ "孙笑科(1993- ),女,北京交通大学电子信息工程学院博士生,主要研究方向为车联网、无线资源分配和管理、边缘计算、优化理论" ]
[ "贡毅(1973- ),男,博士,南方科技大学电子与电气工程系教授、博士生导师,主要研究方向为无线通信和网络、认知无线电、通信信号处理和物理层信息安全等" ]
网络出版日期:2020-06,
纸质出版日期:2020-06-20
移动端阅览
马小婷, 赵军辉, 孙笑科, 等. 基于MEC的车联网协作组网关键技术[J]. 电信科学, 2020,36(6):28-37.
Xiaoting MA, Junhui ZHAO, Xiaoke SUN, et al. Key technologies in collaborative network based on MEC[J]. Telecommunications science, 2020, 36(6): 28-37.
马小婷, 赵军辉, 孙笑科, 等. 基于MEC的车联网协作组网关键技术[J]. 电信科学, 2020,36(6):28-37. DOI: 10.11959/j.issn.1000-0801.2020173.
Xiaoting MA, Junhui ZHAO, Xiaoke SUN, et al. Key technologies in collaborative network based on MEC[J]. Telecommunications science, 2020, 36(6): 28-37. DOI: 10.11959/j.issn.1000-0801.2020173.
为解决车辆高速移动性导致的车联网低时延高可靠性能下降问题,进行基于 MEC(mobile edge computing,移动边缘计算)的车联网协作组网关键技术研究。首先,从车联网中 MEC 的独特性入手,进行低时延、高可靠车联网协作组网研究;然后,根据5G车联网中车辆编队与基于UAV(unmanned aerial vehicle,无人机)辅助的两个典型协作应用场景,进行基于MEC的协作资源管理关键技术研究;最后,探讨基于MEC的车联网资源管理关键技术的研究方向,为后续研究提供参考。
In order to solve the performance degration problem of low latency and high reliability caused by the high-speed mobility of vehicles
the key technologies of collaborative network based on MEC (mobile edge computing) were studied.Starting from the uniqueness of MEC in vehicular networks
the collaborative networking scheme with low latency and high reliability was introduced.According to the two most promising cooperative scenarios of vehicle platooning and UAV (unmanned aerial vehicle) assisted communication in 5G vehicular networks
the key technologies of cooperative resource management based on MEC were investigated.In addition
the research direction analysis of resource management based on MEC in vehicular networks provides a reference for further study.
工业和信息化部 . 关于印发《车联网(智能网联汽车)产业发展行动计划》的通知 [EB ] . 2018 .
Ministry of Industry and Information Technology of the People’s Republic of China . Notice on printing and distributing the action plan for the development of the internet of vehicles (ICVs) industry [EB ] . 2018 .
工业和信息化部 . 关于推动5G加快发展的通知 [EB ] . 2020 .
Ministry of Industry and Information Technology of the People’s Republic of China . Notice on accelerating the development of 5G [EB ] . 2020 .
时晨皓 . 车联网通信中的协同优化机制研究及仿真评估 [D ] . 开封:河南大学 , 2018 .
SHI C H . Research and simulation evaluation of collaborative optimization mechanism in vehicular networking communications [D ] . Kaifeng:Henan University , 2018 .
CHENG X , CHEN C , ZHANG W , et al . 5G-enabled cooperative intelligent vehicular (5GenCIV) framework:when Benz meets marconi [J ] . IEEE Intelligent Systems , 2017 , 32 ( 3 ): 53 - 59 .
ZHAO J H , NI S J , YANG L H , et al . Multiband cooperation for 5G HetNets:a promising network paradigm [J ] . IEEE Vehicular Technology Magazine , 2019 , 14 ( 4 ): 85 - 93 .
NI S J , ZHAO J H , YANG H H , et al . Enhancing downlink transmission in MIMO HetNet with wireless backhaul [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 7 ): 6817 - 6832 .
ZHAO J H , LI Q P , GONG Y , et al . Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 8 ): 7944 - 7956 .
LI Q P , ZHAO J H , GONG Y . Computation offloading and resource allocation for mobile edge computing with multiple access points [J ] . IET Communications , 2019 , 13 ( 17 ): 2668 - 2677 .
李邱苹 , 赵军辉 , 贡毅 . 移动边缘计算中的计算卸载和资源管理方案 [J ] . 电信科学 , 2019 , 35 ( 3 ): 36 - 46 .
LI Q P , ZHAO J H , GONG Y . Computation offloading and resource management scheme in mobile edge computing [J ] . Telecommunications Science , 2019 , 35 ( 3 ): 36 - 46 .
LI Q P , ZHAO J H , GONG Y , et al . Energy-efficient computation offloading and resource allocation in fog computing for internet of everything [J ] . China Communications , 2019 , 16 ( 3 ): 32 - 41 .
叶犇宇 . 无人驾驶汽车未来展望 [J ] . 电子技术与软件工程 , 2017 ( 3 ): 252 - 253 .
YE B Y . The future of unmanned vehicles [J ] . Electronic Technology and Software Engineering , 2017 ( 3 ): 252 - 253 .
ETSI . Mobile edge computing—a key technology towards 5G [R ] . 2015 .
赵军辉 , 陈燕 , 黄德昌 , 等 . 基于“端-管-云”体系的车载自组织网络关键技术 [J ] . 电信科学 , 2016 , 32 ( 8 ): 2 - 9 .
ZHAO J H , CHEN Y , HUANG D C , et al . Study on key technology of VANET sin “terminal management cloud” model [J ] . Telecommunications Science , 2016 , 32 ( 8 ): 2 - 9 .
马小婷 , 赵军辉 , 王传云 , 等 . 车联网中的V2R通信 [J ] . 电信科学 , 2017 , 32 ( 8 ): 21 - 27 .
MA X T , ZHAO J H , WANG C Y , et al . V2R communication in internet of vehicles [J ] . Telecommunications Science , 2017 , 32 ( 8 ): 21 - 27 .
MA X T , ZHAO J H , GONG Y , et al . Carrier sense multiple access with collision avoidance-aware connectivity quality of downlink broadcast in vehicular relay networks [J ] . IET Microwaves,Antennas & Propagation , 2019 , 13 ( 8 ): 1096 - 1103 .
ZHAO J H , KONG M , LI Q P , et al . Contract-based computing resource management via deep reinforcement learning in vehicular fog computing [J ] . IEEE Access , 2020 ( 8 ): 3319 - 3329 .
HOANG V H , HO T M , LE L B . Mobility-aware computation offloading in MEC-based vehicular wireless networks [J ] . IEEE Communications Letters , 2020 , 24 ( 2 ): 466 - 469 .
LIU Y , YU H , XIE S , et al . Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 11 ): 11158 - 11168 .
MA X T , ZHAO J H , LI Q P , et al . Reinforcement learning based task offloading and take-back in vehicle platoon networks [C ] // Proceedings of 2019 IEEE International Conference on Communications Workshops (ICC Workshops) . Piscataway:IEEE Press , 2019 : 1 - 6 .
ZHOU J S , TIAN D X , WANG Y P , et al . Reliability-optimal cooperative communication and computing in connected vehicle systems [J ] . IEEE Transactions on Mobile Computing , 2019 , 19 ( 5 ): 1216 - 1232 .
CAMPOLO C , MOLINARO A , ARANITI G , et al . Better platooning control toward autonomous driving:an LTE device-to-device communications strategy that meets ultralow latency requirements [J ] . IEEE Vehicular Technology Magazine , 2017 , 12 ( 1 ): 30 - 38 .
GUO F X , YU F R , ZHANG H L , et al . Adaptive resource allocation in future wireless networks with blockchain and mobile edge computing [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 3 ): 1689 - 1703 .
WANG X F , HAN Y W , WANG C Y , et al . In-edge AI:intelligentizing mobile edge computing,caching and communication by federated learning [J ] . IEEE Network , 2019 , 33 ( 5 ): 156 - 165 .
范茜莹 , 黄传河 , 朱钧宇 , 等 . 无人机辅助车联网环境下干扰感知的节点接入机制 [J ] . 通信学报 , 2019 ( 6 ): 90 - 101 .
FAN X Y , HUANG C H , ZHU J Y , et al . Interference-aware node access scheme in UAV-aided VANET [J ] . Journal on Communications , 2019 ( 6 ): 90 - 101 .
郭芳 . 无人机辅助的车载通信技术研究 [D ] . 北京:北京邮电大学 , 2018 .
GUO F . Performance optimization for UAV-enabled V2I communication system [D ] . Beijing:Beijing University of Posts and Telecommunications , 2018 .
0
浏览量
1592
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构