浏览全部资源
扫码关注微信
1. 国网浙江省电力有限公司,浙江 杭州 310007
2. 浙江工业大学,浙江 杭州 310023
3. 温州职业技术学院,浙江 温州 325035
[ "沈潇军(1975- ),男,国网浙江省电力有限公司高级工程师,主要研究方向为电力信息化技术及信息管理" ]
[ "葛亚男(1994- ),女,浙江工业大学研究生,主要研究方向为网络安全" ]
[ "沈志豪(1986- ),男,国网浙江省电力有限公司高级工程师,主要研究方向为电力系统信息化运维" ]
[ "倪阳旦(1986- ),男,国网浙江省电力有限公司高级工程师,主要研究方向为电力信息技术" ]
[ "吕明琪(1981- ),男,浙江工业大学副教授,主要研究方向为网络安全、移动安全、系统安全" ]
[ "翁正秋(1981- ),女,温州职业技术学院副教授,主要研究方向为数据安全与大数据技术" ]
网络出版日期:2020-07,
纸质出版日期:2020-07-20
移动端阅览
沈潇军, 葛亚男, 沈志豪, 等. 一种基于LSTM自动编码机的工业系统异常检测方法[J]. 电信科学, 2020,36(7):136-145.
Xiaojun SHEN, Yanan GE, Zhihao SHEN, et al. An LSTM auto-encoder based anomaly detection for industrial system[J]. Telecommunications science, 2020, 36(7): 136-145.
沈潇军, 葛亚男, 沈志豪, 等. 一种基于LSTM自动编码机的工业系统异常检测方法[J]. 电信科学, 2020,36(7):136-145. DOI: 10.11959/j.issn.1000-0801.2020188.
Xiaojun SHEN, Yanan GE, Zhihao SHEN, et al. An LSTM auto-encoder based anomaly detection for industrial system[J]. Telecommunications science, 2020, 36(7): 136-145. DOI: 10.11959/j.issn.1000-0801.2020188.
在工业互联网的环境下,自动有效的异常检测方法对工业系统的安全、稳定生产具有重要的意义。传统的异常检测方法存在需要大量标注样本、不适应高维度时序数据等不足,提出一种基于LSTM自动编码机的工业系统异常检测方法。为克服现有方法依赖标注样本的不足,提出采用自动编码机,通过无监督的方式学习大量正常样本的特征和模式,在此基础上通过对样本进行重构和计算重构误差的方式进行异常检测。其次,为克服现有方法不适应高维度时序数据的不足,提出采用双向LSTM作为编码器,进而挖掘多维时序数据的潜在特征。基于一个真实造纸工业的数据集的实验表明,所提方法在各项指标上都对现有无监督异常检测方法有一定的提升,检测的总体精度达到了93.4%。
In the context of the industrial internet
automatic and effective anomaly detection methods are of great significance to the safe and stable production of industrial systems.Traditional anomaly detection methods have the disadvantages of requiring a large number of labeled samples
and not adapting to high-dimensional time series data.Aiming at these limitations
an industrial system anomaly detection method based on LSTM (long short-term memory)auto-encoder was proposed.Firstly
to address the limitation of relying on labeled samples
an encoder used to learn the features and patterns of a large number of normal samples in an unsupervised manner.Then
anomaly detection was performed via reconstructing samples and calculating the reconstruction error.Secondly
to adapt to high-dimensional time series data
a BiLSTM (bidirectional LSTM) was used as an encoder
and then the potential characteristics of multi-dimensional time series data were mined.Experiments based on a real paper industry data set which demonstrate this method has improved the existing unsupervised anomaly detection methods in various indicators
and the overall accuracy of the detection has reached 93.4%.
ZHOU L Y , GUO H Q . Anomaly detection methods for IoT Networks [C ] // Proceedings of 2018 IEEE International Conference on Service Operations and Logistics,and Informatics (SOLI) . Piscataway:IEEE Press , 2018 : 214 - 219 .
GENGE B , PIROSKA H , CALIN E . Anomaly detection in aging industrial internet of things [J ] . IEEE Access , 2019 ( 99 ):1.
WONG T , LUO Z . Recurrent auto-encoder model for large-scale industrial sensor signal analysis [C ] // Proceedings of International Conference on Engineering Applications of Neural Networks . Berlin:Springer , 2018 : 203 - 216
HUANG H K . Real-time fault-detection for IoT facilities using GBRBM-based DNN [J ] . IEEE Internet of Things Journal , 2019 ( 10 ): 1 - 1 .
RIEGER T , . Fast predictive maintenance in industrial internet of things (IIoT) with deep learning (DL):a review [C ] // Proceedings of 2019 Collaborative European Research Conference (CERC2019).[S.l.:s.n] . 2019 : 69 - 79 .
KANAWADAY A , SANE A . Machine learning for predictive maintenance of industrial machines using IoT sensor data [C ] // Proceedings of 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS) . Piscataway:IEEE Press , 2017 : 107 - 110 .
ABU A , HANEEN A . Effects of distance measure choice on K-nearest neighbor classifier performance:a review [J ] . Big Data , 2019 ( 7 ): 221 - 248 .
BREUNING M , . LOF:identifying density-based local outliers [C ] // Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data . New York:ACM Press , 2000 , 29 ( 2 ): 93 - 104 .
TANG J , . Enhancing effectiveness of outlier detections for low density patterns [C ] // Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining . Berlin:Springer , 2002 .
GRIFFIN J M , DOBERTI A J , VALBORT H , et al . Multiple classification of the force and acceleration signals extracted during multiple machine processes:part 1 intelligent classification from an anomaly perspective [J ] . International Journal of Advanced Manufacturing Technology , 2017 ( 93 ): 1 - 13 .
NANDURI A , SHERRY L . Anomaly detection in aircraft data using recurrent neural networks (RNN) [C ] // Proceedings of 2016 Integrated Communications Navigation and Surveillance (ICNS) . Piscataway:IEEE Press , 2016 .
JANSSENS O . Convolutional neural network based fault detection for rotating machinery [J ] . Journal of Sound and Vibration , 2016 ( 377 ): 331 - 345 .
AMRUTHNATH N , TARUN G . A research study on unsupervised machine learning algorithms for early fault detection in predictive maintenance [C ] // Proceedings of 2018 5th International Conference on Industrial Engineering and Applications (ICIEA) . Piscataway:IEEE Press , 2018 : 355 - 361 .
DIEZ-OLIVAN A , RUBIO J A P . Kernel-based support vector machines for automated health status assessment in monitoring sensor data [J ] . The International Journal of Advanced Manufacturing Technology , 2018 , 95 ( 1-4 ): 327 - 340 .
JOSHI S , PHOHA V . Investigating hidden Markov models capabilities in anomaly detection [C ] // Proceedings of the 43rd Annual Southeast Regional Conference . New York:ACM Press , 2005 : 98 - 103 .
FENG T Z , DU Z H , SUN Y K , et al . Real-time anomaly detection of short-time-scale gwac survey light curves [C ] // Proceedings of 2017 IEEE International Congress on Big Data (BigData Congress) . Piscataway:IEEE Press , 2017 : 224 - 231 .
SERDIO F , LUGHOFER E , PICHLER K , et al . Residual-based fault detection using soft computing techniques for condition monitoring at rolling mills [J ] . Information Sciences , 2014 ( 259 ): 304 - 320 .
KINGMA D P . Auto-encoding variational bayes [J ] . arXiv:1312.6114 . 2013
LU C , WANG Z Y , QIN W L , et al . Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification [J ] . Signal Processing , 2016 ( 130 ): 377 - 388 .
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J ] . Neural computation , 1997 ( 9 ): 1735 - 1780 .
RANJAN C . Dataset:rare event classification in multivariate time series [J ] . arXiv:1809.10717 . 2018
SCHOLKOPF B , WILLIAMSONET R , et al . Support vector method for novelty detection [C ] // Proceedings of the 12th International Conference on Neural Information Processing Systems . Cambridge:MIT Press , 1999 : 582 - 588 .
LIU F T , TING K M , ZHOU Z H . Isolation-based anomaly detection [J ] . ACM Transactions on Knowledge Discovery from Data (TKDD) , 2012 , 6 ( 1 ): 1 - 39 .
MALHOTRA P . LSTM-based encoder-decoder for multi-sensor anomaly detection [J ] . arXiv:1607.00148 . 2016
0
浏览量
1538
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构