浏览全部资源
扫码关注微信
[ "刘顺兰(1965- ),女,杭州电子科技大学电子信息学院教授,主要研究方向为信息与信号处理、无线通信等" ]
[ "肖义德(1995- ),男,杭州电子科技大学电子信息学院硕士生,主要研究方向为信号处理、无线通信等" ]
[ "包建荣(1978- ),男,博士,杭州电子科技大学电子信息学院教授,主要研究方向为空间无线通信、通信信号处理与自主无线电等" ]
网络出版日期:2020-12,
纸质出版日期:2020-12-20
移动端阅览
刘顺兰, 肖义德, 包建荣. 基于随机共振的双门限协作频谱感知算法[J]. 电信科学, 2020,36(12):33-40.
Shunlan LIU, Yide XIAO, Jianrong BAO. Dual threshold cooperative spectrum sensing algorithm based on stochastic resonance[J]. Telecommunications science, 2020, 36(12): 33-40.
刘顺兰, 肖义德, 包建荣. 基于随机共振的双门限协作频谱感知算法[J]. 电信科学, 2020,36(12):33-40. DOI: 10.11959/j.issn.1000-0801.2020248.
Shunlan LIU, Yide XIAO, Jianrong BAO. Dual threshold cooperative spectrum sensing algorithm based on stochastic resonance[J]. Telecommunications science, 2020, 36(12): 33-40. DOI: 10.11959/j.issn.1000-0801.2020248.
针对现有频谱感知算法在低信噪比(SNR)环境中性能检测不佳的问题以及传统随机共振(SR)检测弱信号的方法在实际应用中存在的局限性,通过设置最优门限,计算出最优的协作用户数量,提出了一种基于随机共振的双门限协作频谱感知算法,并对提出的算法进行了性能分析。DCSSR算法通过将位于双门限不确定区域的统计数据经过随机共振系统,进一步提高频谱感知算法在低信噪比下的检测性能。仿真结果表明,在不同信噪比和虚警概率下,DCSSR算法相较于传统单门限能量协作算法、双门限能量协作算法以及单门限随机共振协作算法,检测性能都得到了提升。在信噪比为-20 dB时,提出的DCSSR算法相较于传统单门限能量检测协作算法,检测概率提高了80%。
In view of the poor performance of the existing spectrum sensing algorithm in the low signal-noise ratio (SNR) environment and the limitations of traditional stochastic resonance (SR) detection methods for weak signals in practical applications
a dual threshold cooperative spectrum sensing algorithm based on stochastic resonance (DCSSR) by setting the optimal threshold was proposed and the optimal number of cooperative users was calculated.At last
the performance of the proposed algorithm was analyzed.This algorithm further improves the detection performance of the spectrum sensing algorithm under low signal-to-noise ratio by passing the statistical data located in the double-threshold uncertain region through a stochastic resonance system.Simulation results show that the detection performance of DCSSR algorithm is improved compared with traditional single threshold energy cooperation algorithm
double threshold energy cooperation algorithm and single threshold stochastic resonance cooperation algorithm.When the SNR is -20 dB
the proposed DCSSR algorithm improves the detection probability by 80% compared with the traditional single threshold energy detection cooperation algorithm.
HAYKIN S . Cognitive radio:brain-empowered wireless communications [J ] . IEEE Journal on Selected Areas in Communications , 2005 ( 23 ): 201 - 220 .
YUCEKT , ARSLAN H . A survey of spectrum sensing algorithms for cognitive radio applications [J ] . IEEE Communications Surveys & Tutorials , 2009 , 11 ( 1 ): 116 - 130 .
TANG H Y , . Some physical layer issues of wide-band cognitive radio systems [C ] // First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks . Piscataway:IEEE Press , 2005 : 151 - 159 .
ALTHUNIBAT S , RENZO M D , GRANELLI F . Towards energy-efficient cooperative spectrum sensing for cognitive radio networks:an overview [J ] . Telecommunication Systems , 2015 , 59 ( 1 ): 77 - 91 .
HE D , LIN Y , HE C , et al . A novel spectrum-sensing technique in cognitive radio based on stochastic resonance [J ] . IEEE Transactions on Vehicular Technology , 2010 , 59 ( 4 ): 1680 - 1688 .
HE D . Chaotic stochastic resonance energy detection fusion used in cooperative spectrum sensing [J ] . IEEE Transactions on Vehicular Technology , 2013 , 62 ( 2 ): 620 - 627 .
CHEN H , VARSHNEY P K , KAY S M , et al . Theory of the stochastic resonance effect in signal detection:part I—fixed detectors [J ] . IEEE Transactions on Signal Processing , 2007 , 55 ( 7 ): 3172 - 3184 .
冷永刚 , 王太勇 , 郭焱 , 等 . 双稳随机共振参数特性的研究 [J ] . 物理学报 , 2007 ( 1 ): 30 - 35 .
LENG Y G , WANG T Y , GUO Y , et al . Study on parameter characteristics of bistable stochastic resonance [J ] . Journal of Physics , 2007 ( 1 ): 30 - 35 .
CHEN H , VARSHNEY P K , MICHELS J H . Noise enhanced signal detection and estimation [C ] // Proceedings of the Forty-First Asilomar Conference on Signals,Systems and Computers.[S.l:s.n] . 2007 : 701 - 705 .
高锐 , 李赞 , 吴利平 , 等 . 低信噪比条件下基于随机共振的感知方法与性能分析 [J ] . 电子学报 , 2013 , 41 ( 9 ): 1672 - 1679 .
GAO R , LI Z , WU L P , et al . Perception method and performance analysis based on stochastic resonance in low SNR [J ] . Acta Electronica Sinica , 2013 , 41 ( 9 ): 1672 - 1679 .
陈长兴 , 符辉 , 牛德智 , 等 . 基于双门限能量检测的协作频谱感知算法 [J ] . 系统工程与电子技术 , 2013 , 35 ( 8 ): 1742 - 1746 .
CHEN C X , FU H , NIU D Z , et al . Cooperative spectrum sensing algorithm based on double threshold energy detection [J ] . System Engineering and Electronic Technology , 2013 , 35 ( 8 ): 1742 - 1746
TANDRA R , SAHAI A . SNR walls for signal detection [J ] . Selected Topics in Signal Processing , 2008 , 2 ( 1 ): 4 - 17 .
SAHAI A , CABRIC D . Spectrum sensing:fundamental limits and practical challenges [C ] // Proceedings of IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks . Piscataway:IEEE Press , 2005 .
CHEN W , WANG J , LI H , et al . Stochastic resonance noise enhanced spectrum sensing in cognitive radio networks [C ] // Proceedings of the Global Communications Conference . Piscataway:IEEE Press , 2010 .
MISHR S M , SHHAI A , BRODERSEN R , et al . Cooperative sensing among cognitive radios [C ] // Proceedings of 2006 IEEE International Conference on Communications . Piscataway:IEEE Press , 2016 .
张亮 , 冯景瑜 , 卢光跃 . 协作频谱感知中的可信双门限硬判决融合算法 [J ] . 信号处理 , 2014 , 30 ( 2 ): 181 - 188 .
ZHANG L , FENG J Y , LU G Y . Trusted dual threshold hard decision fusion algorithm in cooperative spectrum sensing [J ] . Signal Processing , 2014 , 30 ( 2 ): 181 - 188
ZHANG W , MALLIK R K , LETAIEF K B . Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks [J ] . IEEE Transactions on Wireless Communications , 2009 , 8 ( 12 ): 5761 - 5766 .
WAN R , DING L , XIONG N , et al . Dynamic dual threshold cooperative spectrum sensing for cognitive radio under noise power uncertainty [J ] . Human-Centric Computing and Information Sciences , 2019 , 9 ( 22 ): 11 - 15 .
0
浏览量
290
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构